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Abstract

This paper considers tests of the effectiveness of a policy intervention, defined as a change
in the parameters of a policy rule, in the context of a macroeconometric dynamic stochastic
general equilibrium (DSGE) model. We consider two types of intervention, first the standard
case of a parameter change that does not alter the steady state, and second one that does
alter the steady state, e.g. the target rate of inflation. We consider two types of test, one a
multi-horizon test, where the post-intervention policy horizon, H, is small and fixed, and a
mean policy effect test where H is allowed to increase without bounds. The multi-horizon test
requires Gaussian errors, but the mean policy effect test does not. It is shown that neither
of these two tests are consistent, in the sense that the the power of the tests does not tend
to unity as H → ∞, unless the intervention alters the steady state. This follows directly
from the fact that DSGE variables are measured as deviations from the steady state, and
the effects of policy change on target variables decay exponentially fast. We investigate the
size and power of the proposed mean effect test by simulating a standard three equation New
Keynesian DSGE model. The simulation results are in line with our theoretical findings and
show that in all applications the tests have the correct size; but unless the intervention alters
the steady state, their power does not go to unity with H.
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1 Introduction

This paper considers testing the effectiveness of a policy intervention given time-series data on

outcome variables, both before and after the policy change. The policy effect is measured as the

difference between the policy outcome, the post-intervention realized values, and a counterfactual.

The counterfactual is constructed assuming no policy intervention, using parameters estimated

on the pre-intervention sample.1 While there are many ways that one could construct such a

counterfactual, this paper considers the case where it is obtained from a dynamic stochastic

general equilibrium (DSGE) model whose variables are measured as deviations from the steady

state.2 The realized policy outcomes will reflect both a deterministic component, the effect of the

intervention, and a stochastic component, the post-intervention disturbances or shocks.

In the DSGE literature a typical policy intervention is a monetary policy shock, calculated

as a one standard error displacement of the structural disturbance of a policy equation, such

as a Taylor rule. The impulse response function (IRF) is the time profile of the deterministic

component of the effect of such a displacement, and as discussed in Section 2.1, yields ex ante

information about the way the model responds to such a displacement, not an ex post evaluation

of the effectiveness of an actual policy intervention. As we shall see, IRFs ignore the cumulative

uncertainty associated with the stochastic component, the post-intervention disturbances. While

one can construct tests for such displacements, we focus on interventions that change policy

parameters. The first type of intervention, such as changing parameters of the Taylor Rule, does

not alter the steady state. The second type, such as changing the target rate of inflation, does

alter the steady state. We show that if the intervention does not alter the steady state, the power

of the tests will not go to unity as the post-intervention horizon, H, gets large. This is an inherent

consequence of the fact that DSGE models use variables measured as deviations from the steady

state and the effects of policy changes decay exponentially fast. Thus unless the intervention

alters the steady state we cannot be sure that it has had an effect.

Tests based on the differences between realizations and counterfactuals are standard in the

statistical literature and have been used to examine a range of macroeconometric questions.

Abadie and Gardeazabal (2003) examine the effect of terrorism on the Basque country using a

"synthetic control region" as a counterfactual. Hsiao, Ching and Wan (2012) examine the effect

on growth in Hong Kong of political and economic integration with mainland China, using a panel

data approach to construct a counterfactual using predictions from similar economies. Synthetic

control and panel data counterfactuals are compared by Gardeazabal and Vega-Bayo (2016).

Pesaran, Smith and Smith (2007) examine what would have happened to the economies of the

UK and the eurozone had the UK joined the euro in 1999, using "euro" restrictions on a GVAR

1The Lucas Critique does not apply since counterfactuals are estimated using the pre-intervention sample, and
the policy-induced parameter change gets reflected in the realized post-intervention outcomes, which embody the
effect of the change in the policy parameters and any consequent changes to expectations.

2Policy ineffectiveness tests where the counterfactuals are obtained from reduced or final form specifications are
considered in Pesaran and Smith (2016).
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model to construct a counterfactual. Fagan, Lothian and McNelis (2013) examine whether the

Gold Standard was in fact destabilising, constructing the counterfactual by replacing the pre-1914

US money supply process with a Taylor rule in a DSGE model.

Rather than comparing actuals with counterfactuals, the mainstream macro-economic litera-

ture has tended to emphasise estimation issues in the context of structural vector autoregressions

(VARs) and DSGEs. For instance, in the case of the Volcker disinflation which marked the transi-

tion from an era of macroeconomic turbulence and high inflation to an era of "Great Moderation"

and low inflation, Primiceri (2006) provides an explanation of changes in policy in terms of learn-

ing about the parameters of the Phillips curve. Sims and Zha (2006) estimate regime switching

structural VARs and find that the best fit allows time variation in the error variances only. Boivin

and Giannoni (2006) argue that by responding more strongly to inflation expectations, monetary

policy stabilised the economy more effectively after 1980. Inoue and Rossi (2011) investigate the

sources of the Great Moderation and, using a representative New Keynesian and structural VAR

models, show that the substantial decrease in output growth volatility during mid-1980s was due

to changes in monetary policy parameters, as well as to other parameters rather than just good

luck (reduced shock volatilities).

In contrast, the focus of the present paper is on formal statistical tests of the effects of a policy

intervention. The null hypothesis is policy ineffectiveness: no change in policy parameters.3

This null hypothesis is tested in conjunction with the maintained assumption that non-policy

parameters remain stable.4 We consider two types of test. The first is a multi-horizon test, where

the post-intervention policy horizon, H, is small and fixed. This has a chi-squared distribution.

The second is a test of the mean policy effect where H tends to infinity, which has a standard

normal distribution. The multi-horizon test will have more power but requires Gaussian errors,

whereas the mean effect test does not require Gaussianity. There is thus a trade-offbetween power

and robustness to the failure of the Gaussian assumption. In both cases the power of the test will

only go to one as H goes to infinity if the intervention changes the steady state. We assume a

best case scenario for the tests namely that the DSGE model is well specified and identified, such

that we can obtain
√
T consistent estimates of its parameters.

The power of the test increases with the degree of persistence of the model. The higher the

degree of persistence, the longer the effects of the intervention last, the easier it is to detect them.

The power is also increased by the distance the economy is from its steady state at the time of

intervention. A parameter change when the economy is in steady state cannot be detected. In

practice, major policy interventions tend to take place at times when the economy is far from its

steady state, increasing power.

We investigate the size and power of the proposed mean policy effect test by simulating a

3Note that we are concerned with the empirical issue of whether the effect of a policy change can be detected
not the theoretical policy ineffectiveness proposition of Sargent and Wallace (1975).

4 In practice, it is diffi cult to isolate the effects of policy change from other non-policy related parameter changes.
All statistical tests, in one form or another, are joint tests of model specification and the null hypothesis of interest.
As a result, the test outcomes must be interpreted with care.
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standard three equation New Keynesian DSGE model. The model exhibits the usual impulse

responses when subject to demand, supply and monetary policy shocks. To illustrate the factors

influencing power of the policy ineffectiveness test, we also present policy impulse response func-

tions that show the time profile of the effects of a change in policy parameters. The simulation

results are in line with our theoretical findings and show that in all applications the tests have the

correct size; but unless the intervention changes the steady state, their power can be low. When

the policy intervention changes the inflation target, the test has power for the effects on inflation

and interest rates, but not on output due to model’s long run neutrality properties.

The rest of the paper is organized as follows: Section 2 specifies the DSGE model. Section

3 describes the types of policy interventions to be considered. Section 4 sets out the policy

intervention tests and their underlying assumptions, derives their asymptotic distributions, and

discusses their power properties. Tests of policy interventions that do not change the steady state

are considered in sub-section 4.1, where the properties of the multi-horizon and the mean effect

tests are considered. Sub-section 4.2 discusses the properties of the two types of tests in the

case of interventions that only change the steady state. Section 5 provides a simulated policy

analysis of the New Keynesian model and the performance of the mean effect test, including tests

for interventions which change both the parameters of the DSGE model and of the steady state.

Section 6 provides some concluding remarks. The more technical derivations are given in an online

supplement.

2 Specification of the DSGE model

Consider a standard rational expectations (RE) DSGE model, where all the variables are endoge-

nous.5 Denote the set of endogenous variables by the (kz + 1) × 1 vector qt = (yt, z
′
t)
′, where

yt is the target variable, and qt, contains policy and non policy variables. The deviations from

steady state are q̃t = qt − q∗t (α), where α is a vector of parameters that affect the steady state,

including policy variables like the target rate of inflation or the target rate of growth of money

supply. The DSGE model determining deviations from steady state is given by

A0q̃t = A1Et(q̃t+1) + A2q̃t−1 + ut, (1)

where the structural disturbances, ut, have mean zero, E(ut) = 0, are serially uncorrelated and

have a constant, typically diagonal, variance matrix, E(utu
′
t) = Σu. Et(q̃t+1) = E(q̃t+1 | It),

where It is the information set that includes ut, and the lagged values of the variables, q̃t. By

construction it is assumed that E (q̃t) = 0.

Initially we abstract from parameter estimation uncertainty and denote the vector of structural

and policy parameters of the DSGE model by θ, and assume that Σu remains invariant to any

policy change.6 Thus q̃t = q̃t(α, θ) and the deviations from steady state are a function of both
5The model can be readily extended to allow for exogenous variables, such as oil prices or foreign variables.
6θ is often referred to as a vector of deep parameters and elements of matrices, Ai, i = 0, 1, 2 are defined as

functions of θ.
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the parameters that determine the steady state, α, and those that appear in the DSGE model,

θ. Unless necessary for clarity, we will suppress the dependence of q̃t on α, and θ.

An example of such a system is the three equation New Keynesian DSGE model, which we

simulate in Section 5. In this model, the DSGE policy parameters are the parameters of the

Taylor rule, the steady state policy parameter is the target rate of inflation.

Under the above set up, the RE model (1) has the unique solution7

q̃t = Φ(θ)q̃t−1 + Γ(θ)ut, (2)

if the quadratic matrix equation

A1Φ
2 −A0Φ + A2 = 0, (3)

has a solution, Φ, with all its eigenvalues inside the unit circle, and Γ(θ) = (A0 −A1Φ)−1. Below

we shall also use the reduced form disturbances, εt = Γ(θ)ut, and note that

Σε(θ) = E(εtε
′
t) = (A0 −A1Φ)−1Σu(A0 −A1Φ)

′−1. (4)

The unique solution of the RE model in (2) is a vector autoregression, and corresponds to the

reduced form of a standard simultaneous equations model where there are no exogenous variables.

The DSGE parameter vector, θ, is composed of a set of policy parameters, θp, and a set

of structural parameters, θs, that are invariant to changes in θp. Similarly, the steady state

parameters can be divided into αp and αs. A policy intervention is defined in terms of a change

in one or more elements of θp or αp. It is assumed that the policy parameters are under the control

of the policy maker. The null hypothesis of our test is policy ineffectiveness, defined as no change in

the parameters. We assume that the model is known by economic agents, the announcement and

implementation of the intervention are credible, and no further changes are expected.8 We suppose

that the policy intervention occurs at the end of time t = T0, and we have a pre-intervention

sample, t = M,M + 1, ..., T0, and a post-intervention sample, t = T0 + 1, T0 + 2, .., T0 + H.

Therefore, the post-intervention evaluation horizon is H and the sample size for estimation of the

pre-intervention parameters is T = T0 −M + 1. This notation allows us to increase the sample

size T (by letting M → −∞), while keeping the date of the intervention fixed at T0.

2.1 Policy effects and impulse responses

In the literature the effects of policy interventions are usually investigated using the impulse

response function. Consider a policy intervention at time T0 + 1 defined by a one standard

error, σi, displacement of the disturbance of the ith equation of the model (taken to be a policy

equation). Since the structural disturbances are assumed to be orthogonal, then uT0+1 = σiei,

where ei is a vector of zeros, except for its ith element which is set to unity. It is assumed
7For a discussion of alternative solutions of RE models see Chapter 20 of Pesaran (2015).
8Kulish and Pagan (2017) consider solutions of forward looking models in the case of imperfect credibility where

policy announcements are not necessarily incorporated into expectations.
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that the structural parameters, θ and α, are invariant to such an intervention. Therefore, the

counterfactual associated with the event uT0+1 = σiei is given by q̃T0+h(σi) = E(q̃T0+h | uT0+1 =

σiei, IT0), where iterating (2) forward from T0 yields

q̃T0+h = Φh(θ)q̃T0 +
h−1∑
j=0

Φj (θ) Γ(θ)uT0+h−j , h = 1, 2, ...,H. (5)

Hence

q̃T0+h(σi) = Φh (θ) q̃T0 + σiΦ
h−1 (θ) Γ(θ)ei. (6)

The realized policy effect of this displacement is

dT0+h(σi) = q̃T0+h − q̃T0+h(σi), (7)

which upon using (5) and (6) gives

dT0+h(σi) = −σiΦh−1 (θ) Γ(θ)ei + VT0,h (θ) , (8)

where

VT0,h (θ) =

h−1∑
j=0

Φj (θ) Γ(θ)uT0+h−j . (9)

The IRF for this shock scenario is given by,

IRF (h, σi,θ) = σiΦ
h−1 (θ) Γ(θ)ei, (10)

which refers only to the deterministic component of the realized effect of the policy, dT0+h(σi), and

ignores the random componentVT0,h (θ), which could be quite important, particularly considering

the cumulative nature of the future shocks in (9). Note that

V ar [VT0,h (θ)] =

h−1∑
j=0

Φj (θ) Γ(θ)ΣuΓ
′(θ)Φ′j (θ) , (11)

which is increasing in h and can be quite sizeable as compared to the IRF (h, σi,θ) component

of dT0+h(σi). Any attempt at ex post policy evaluation must also take account of the possible

effects of the future disturbances, uT0+h for h = 1, 2, ...,H, on the outcomes. In fact, Benati and

Surico (2009) show how structural VAR based counterfactuals and impulse response functions,

which treat policies as being about shock impulse response functions, may be misleading in not

revealing changes in policy parameters, which is the focus of concern here.

In what follows we focus on policy interventions that involve changes in θ and α; introduce the

concept of policy impulse response function (PIRF) to be contrasted with the IRF; and propose

ex post tests of policy effectiveness.
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3 Types of policy interventions

3.1 Policy interventions that do not change the steady state

First consider a policy intervention that changes one or more elements of θp, but leaves the steady

state unchanged. This will affect the mean outcomes through changes in Φ(θ), and the variance of

the outcomes through changes in Γ(θ). Denote the pre-intervention parameters by θ0 = (θ0′p ,θ
′
s)
′,

and the post-intervention parameters by θ1 = (θ1′p ,θ
′
s)
′, where one or more elements of θp are

changed. If the intervention at t = T0 is fully communicated, and seen to be credible, with

expectations adjusting immediately, the process switches from

q̃t = Φ(θ0)q̃t−1 + Γ(θ0)ut, t = M,M + 1,M + 2, ..., T0,

to

q̃t = Φ(θ1)q̃t−1 + Γ(θ1)ut, t = T0 + 1, T0 + 2, ..., T0 +H.

Suppose now that we are interested in the effects of the intervention on the target variable ỹt =

s′q̃t, where s is a the (kz + 1) × 1 selection vector with all its elements zero except for its first

element which is set to unity.9 The counterfactual values of the target variable, ỹT0+h, under the

null hypothesis of no policy change is given by

ỹ0T0+h = s′Φh
(
θ0
)
q̃T0 , for h = 1, 2, ...,H, (12)

and only requires estimation of θ0. The policy effect of the intervention on the target variable is

then defined as the difference between the realized value, yT0+h, and the associated counterfactual,

y0T0+h, namely

dT0+h(θ0) = yT0+h − y0T0+h, h = 1, 2, ...,H. (13)

In the present case, where the intervention does not alter the steady state, then (13) can also be

written as

dT0+h(θ0) = ỹT0+h − ỹ0T0+h, h = 1, 2, ...,H. (14)

Now using (5) and (12), the realized policy effects can be written as

dT0+h(θ1,θ0) = s′
[
Φh
(
θ1
)
−Φh

(
θ0
)]

q̃T0 + VT0,h

(
θ1
)
,

where VT0,h

(
θ1
)
is defined by (9) and evaluated at θ = θ1. As in the case of policy shocks

discussed in sub-section 2.1, the outcome of the policy change has a deterministic component,

which we refer to as the policy impulse response function (PIRF) given by

PIRFy(h,θ
0,θ1, q̃T0) = s′

[
Φh
(
θ1
)
−Φh

(
θ0
)]

q̃T0 . (15)

PIRF is the expected difference in the outcomes associated with the pre- and post-policy para-

meters. Also, unlike the impulse response function, (10), the PIRF depends on the state of the

9 If we are interested in more than one target variable the selection vector can be replaced by a selection matrix.
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economy at the time of the intervention, q̃T0 . But like the IRF, due to the stationary nature of

the underlying DSGE model, the PIRF also tends to zero exponentially, which turns out to be

important for the power of the policy effectiveness tests discussed below.

The stochastic component of the policy effect dT0+h(θ1,θ0), namely VT0,h

(
θ1
)
, increases in

importance with h, and also plays an important role in the policy ineffectiveness tests.

3.2 Policy interventions that change the steady state

Suppose that one or more parameters that determine the steady state and which are under the

control of the policy maker, denoted by αp, are changed from α0p at the end of period T0, to α
1
p,

over the period t = T0 + 1, T0 + 2, ...T0 +H. The policy effects in this case are measured in terms

of the original variables yT0+h, not deviations from the steady state, and are given by

dT0+h(θ,α0) = yT0+h − y0T0+h, h = 1, 2, ...,H, (16)

where yT0+h is the realized value of the target variable, yt, post-intervention and the counterfactual

is given by

y0T0+h = y∗T0+h
(
α0
)

+ s′Φh (θ)
[
qT0 − q∗T0

(
α0
)]
, for h = 1, 2, ...,H. (17)

Note that in this case θ has the same value before and after the policy change.10

3.3 Policy interventions that change volatilities

So far we have considered how the policy intervention changes the levels of the variables. One can

also consider how policy interventions change volatilities. Using (11), we can see that the effect

of an intervention on volatility, the difference between the variance with and without the policy

change, is given by

V ar
(
q̃T0+h | IT0 ,θ1

)
− V ar

(
q̃T0+h | IT0 ,θ0

)
=

h−1∑
j=0

Φj
(
θ1
)
Γ(θ1)ΣuΓ

′(θ1)Φ′j
(
θ1
)
−
h−1∑
j=0

Φj
(
θ0
)
Γ(θ0)ΣuΓ

′(θ0)Φ′j
(
θ0
)
.

Conditional on the structural error variances, Σu, remaining constant, one could, in principle,

derive a test statistic, for a policy induced volatility change. This is beyond the scope of this

paper and is likely to be more challenging than the case discussed below of deriving a test for a

policy induced level change in q̃T0+h. To test for the effect of a policy induced level change one

only needs to estimate θ on the pre-intervention sample, but to test for a policy induced volatility

change one would also need estimates of θ for the post-intervention sample.

While much of the theoretical literature is concerned with the issue of policy induced reduction

in volatilities, in practice policy objectives are nearly always expressed in terms of their intended

10 It is also possible to consider a policy intervention that involves changes to both θ and α, and this case will
be considered in the simulations.
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level effects; reducing inflation, raising output, or reducing unemployment. Examples include the

Volcker commitment to reduce the level of inflation, or the Japanese Government commitments

to increase inflation/stop deflation.

Finally, a mean shift is relatively easy to interpret, few would disagree that the reduction of

inflation following the Volcker disinflation (what we would regard as a change in the steady state)

was the result of policy. A variance shift is more diffi cult to interpret. In the case of the Great

Moderation, there is considerable dispute about whether the reduction in the variance of output

growth was due to good policy (changes in policy parameters, θp) or good luck (reductions in

‖Σu‖).

4 Derivation of policy ineffectiveness tests

We derive tests for policy interventions that (i) change parameters of the DSGE model, θp, without

changing the steady state, and (ii) policy interventions that change αp, the policy parameter of

the steady state and do not change θ.11 Similar tests can also be developed for the policy shocks

discussed in sub-section 2.1.

We consider two types of closely related tests: a multi-horizon test and a mean effect test. The

former takes the evaluation horizon, H, as fixed, but assumes that the post policy intervention

errors, uT0+h, for h = 1, 2, ...,H, are Gaussian. The latter aims at reducing the dependence of

the test on the Gaussian assumption by considering policy effects averaged over relatively long

evaluation horizon. Note, however, that neither tests require pre-policy intervention errors to be

Gaussian for suffi ciently large T .

To simplify the exposition we continue with the case of a scalar target variable yt, being the first

element of the (kz + 1)× 1 vector of endogenous variables, qt = (yt, z
′
t)
′. But the proposed tests

readily generalise to the case where there are more target variables. For notational convenience

we also set m = kz + 1.

To develop tests of policy effects and derive their distribution we shall adopt the following

assumptions.

Assumption 1: The RE model defined by (1) has a unique solution given by (2), and

the structural parameters, θ ∈ Θ, are identified at θ0 and θ1 (the pre and post-intervention

parameters). The structural errors, ut, are serially uncorrelated with zero means and a constant

covariance matrix, Σu. In particular, Σu is invariant to the policy change.

Assumption 2a: The spectral radius of Φ(θ), defined by |λmax [Φ(θ)]|, is strictly less than
unity for values of θ = θ0 and θ1 ∈ Θ.12

Assumption 2b: There exists a matrix norm of Φ(θ), denoted by ‖Φ(θ)‖, such that
‖Φ(θ)‖ < 1, for values of θ = θ0 and θ1 ∈ Θ.

Assumption 3: Standard regularity assumptions on the structural errors, ut, and the

11See also sub-sections 3.1 and 3.2.
12λmax(A) stands for the largest eigenvalue of matrix A.
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processes generating the exogenous variables (if any) apply such that θ0 can be consistently

estimated by θ̂
0
T based on the pre-intervention sample, t = M,M + 1,M + 2, ..., T0, where

T = T0 −M + 1, and θ̂
0
T = θ0 +Op

(
T−1/2

)
. In particular

√
T
(
θ̂
0
T − θ0

)
a∼ N(0,Σθ0), and E

∥∥∥θ̂0T − θ0∥∥∥ = O(T−1/2), (18)

where Σθ0 is a symmetric positive definite matrix.

Assumption 4: Φ(θ) = (φij(θ)), is bounded and continuously differentiable in θ, such that∥∥∂φij(θ)/∂θ′
∥∥, for all i and j exist and are bounded.

Assumption 5: The initial values, q̃T0 , are bounded, namely ‖q̃T0‖ < K, where K is a fixed

positive constant.

Assumptions 1, 2a, 3 and 4 are standard in the literature on the econometric analysis of DSGE

models. The conditions for identification in Assumption 1 are discussed in Koop, Pesaran and

Smith (2013). Assumption 2a ensures that ‖Φ(θ)‖ < λ, where λ is a finite positive constant.13

Assumption 2b is stronger than 2a and further requires that λ < 1. This latter restriction allows

us to simplify the proofs considerably and obtain the main theoretical results without requiring

high order differentiability of Φ(θ) which will be needed in the absence of Assumption 2b.

In cases where both H and T go to infinity we shall also consider the following joint asymptotic

condition:

Condition 1 The post-intervention sample size, H, rises with the pre-intervention sample size,

T , such that H = κT ε, where κ is a fixed positive constant, and ε ≤ 1/2.

4.1 Tests of policy interventions that do not change the steady state

Using (12), estimates of the counterfactuals in the absence of a policy change are given by

̂̃y0T0+h = s′Φh
(
θ̂
0
T

)
q̃T0 , h = 1, 2, ...,H, (19)

where under Assumption 3, θ̂
0
T is a

√
T consistent estimator of θ based on the pre-intervention

sample. Therefore, the estimated policy effects are given by

d̂T0+h(θ̂
0
T ) = s′q̃T0+h − s′Φh

(
θ̂
0
T

)
q̃T0 , h = 1, 2, ...,H. (20)

The sampling distribution of d̂T0+h(θ̂
0
T ), depends on post-intervention parameters only under the

alternative that the policy is effective, but not under the null hypothesis of no policy effect as

defined by

H0 : θ1 = θ0. (21)

To derive the distribution of the policy effects, d̂T0+h(θ̂
0
T ), (for h = 1, 2, ...,H), first recall that

post-intervention realized values, q̃T0+h, are given by

13Note that there exists a matrix norm, ‖A‖, such that |λmax(A)| ≤ ‖A‖ ≤ |λmax(A)| + ε, where ε is a positive
constant. See, for example, Lemma 5.10.10 in Horn and Johnson (1985).
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q̃T0+h = Φh
(
θ1
)
q̃T0 +

h−1∑
j=0

Φj
(
θ1
)
Γ(θ1)uT0+h−j . (22)

Using (22) and substituting the results for q̃T0+h in (20) we have

d̂T0+h(θ̂
0
T ) = µ̂T0,h(θ̂

0
T ) + vT0,h

(
θ1
)
, (23)

where

µ̂T0,h(θ̂
0
T ) = −s′

[
Φh
(
θ̂
0
T

)
−Φh

(
θ1
)]

q̃T0 , (24)

vT0,h
(
θ1
)

= s′VT0,h

(
θ1
)

=

h−1∑
j=0

s′Φj
(
θ1
)
Γ(θ1)uT0+h−j . (25)

In (23) the estimated policy effect, d̂T0+h(θ̂
0
T ), has a systematic component, µ̂T0,h(θ̂

0
T ), and a

stochastic component, vT0,h
(
θ1
)
, which is a weighted linear combination of serially uncorrelated

disturbances, ut, with the weights decaying exponentially under Assumption 2a.

4.1.1 A multi-horizon policy ineffectiveness test

A multi-horizon policy ineffectiveness test ofH0 can now be based on the policy effects, d̂T0+h(θ̂
0
T ),

h = 1, 2, ...,H, jointly. When H is fixed and T suffi ciently large, such a policy ineffectiveness test

can be developed if we are prepared to make distributional assumptions regarding the post policy

shocks, uT0+h for h = 1, 2, ...,H. For example, assuming that post policy shocks are Gaussian

it readily follows that, under the null of no policy effects, (21), and with T suffi ciently large,

d̂H =
(
d̂T0+1(θ̂

0
T ), d̂T0+2(θ̂

0
T ), ..., d̂T0+H(θ̂

0
T )
)′
, has a multivariate normal distribution with zero

mean. This follows using (24) in (23), and noting that by Assumption 3 and under H0 : θ1 = θ0

we have

d̂H =
(
s′ ⊗ IH

)
vH
(
θ0
)

+Op

(
T−1/2

)
, (26)

where vH
(
θ0
)

=
(
vT0,1

(
θ0
)
, vT0,2

(
θ0
)
, ..., vT0,H

(
θ0
))′
. Furthermore, using (25) and recalling

that m = kz + 1 we obtain

vH
(
θ0
)

=


Im 0m . . . 0m

Φ
(
θ0
)

Im . . . 0m
...

... . . .
...

Φh−1 (θ0) Φh−2 (θ0) . . . Im




Γ(θ0) 0m . . . 0m
0m Γ(θ0) . . . 0m
...

... . . .
...

0m 0m . . . Γ(θ0)




uT0+1
uT0+2
...

uT0+H


= Ψ

(
θ0
) (

Γ(θ0)⊗ IH
)
uH . (27)

Also, under Assumption 1, V ar (uH) = (Σu ⊗ IH), and hence

V ar
[
vH
(
θ0
)]

= Ψ
(
θ0
) [

Γ(θ0)ΣuΓ
′(θ0)⊗ IH

]
Ψ′
(
θ0
)
,

which is an mH ×mH matrix. Hence, for T suffi ciently large we have

V ar
(
d̂H

)
=
(
s′ ⊗ IH

)
Ψ
(
θ0
) [

Γ(θ0)ΣuΓ
′(θ0)⊗ IH

]
Ψ′
(
θ0
)

(s⊗ IH) . (28)
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The following test statistics can now be considered

TH = d̂′H

[
̂

V ar
(
d̂H

)]−1
d̂H , (29)

where
̂

V ar
(
d̂H

)
=
(
s′ ⊗ IH

)
Ψ
(
θ̂
0
T

) [
Γ(θ̂

0
T )Σ̂uΓ

′(θ̂
0
T )⊗ IH

]
Ψ′
(
θ̂
0
T

)
(s⊗ IH) . (30)

The estimators, Σ̂u and θ̂
0
T , can be computed using the pre-intervention sample. Then under

Assumptions 1, 2a, 3, 4 and 5, it follows that TH → χ2H , for a fixed H and as T → ∞. The test
can be extended readily to more than one target variable by replacing the selection vector s with

an appropriate selection matrix.

The power of the TH test Using (23), under the alternative hypothesis, H1 : θ1 6= θ1, we

have

d̂H =
(
s′ ⊗ IH

)
µH +

(
s′ ⊗ IH

)
vH
(
θ1
)

+Op

(
T−1/2

)
,

where µH =
[
µ1(θ

0,θ1, q̃T0), µ2(θ
0,θ1, q̃T0), ..., µH(θ0,θ1, q̃T0)

]′
, and µh(θ0,θ1, q̃T0) is the prob-

ability limit of µ̂T0,h(θ̂
0
T ), under H1. Using (24), we have

µ̂T0,h(θ̂
0
T )→p µh(θ0,θ1, q̃T0) = s′

[
Φh
(
θ1
)
−Φh

(
θ0
)]

q̃T0 .

It is now readily follows that under H1, the multi-horizon test statistic, TH , defined by (29) is dis-
tributed as a non-central χ2H(CH), with the non-centrality parameter CH = µ′H

[
V ar

(
d̂H

)]−1
µH >

0, where V ar
(
d̂H

)
is given by (28). The power is increasing in CH which in turn depends on the

norm of µH . Specifically, CH ≤ λmax
([
V ar

(
d̂H

)]−1)
µ′HµH , where λmax

([
V ar

(
d̂H

)]−1)
=

λmin

([
V ar

(
d̂H

)])
is strictly positive abd bounded in H. Furthermore, so long as q̃T0 6= 0, then

µ′HµH =
∑H

h=1 µ
2
h(θ0,θ1, q̃T0) > 0, and the test has power for any H. In this case he power of the

test rises with
∥∥θ1 − θ0∥∥ and ‖q̃T0‖, and falls with ∥∥∥V ar (d̂H

)∥∥∥. However, due to the stationary
nature of the DSGE model, as formalized by Assumption 2, µh(θ0,θ1, q̃T0) → 0, as h → ∞, at
the exponential rate of [λmax(Φ(θ))]h, which ensures that µ′HµH is bounded in H. This in turn

means that the test need not be consistent, in the sense that the power of the test need not tend

to unity as H →∞.

4.1.2 Mean policy effects test without Gaussianity

We can minimize the role of the Gaussianity assumption by basing the policy ineffectiveness test

on a "mean policy effect", computed over the post-intervention horizon T0+h, for h = 1, 2, ...,H,

namely

d̂H(θ̂
0
T ) =

1

H

H∑
h=1

d̂T0+h(θ̂
0
T ). (31)
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For a fixed H, the implicit null hypothesis of no policy effects can now be specified as

H ′0 : p lim
T→∞

(
H−1/2

H∑
h=1

µ̂T0,h(θ̂
0
T )

)
= 0. (32)

As we shall see, this condition is met under Assumptions 1, 2a, 3 and 4 when H is fixed and as

T →∞.
Interestingly enough, H ′0 continues to hold even if H → ∞, so long as Assumption 2b holds

and the rate of increase of H in relation to T is governed by the joint asymptotic condition 1. If

the underlying RE model is correctly specified, then under the null of no policy change, H0, we

have

H−1/2
H∑
h=1

µ̂T0,h(θ̂
0
T ) = −s′

{
H−1/2

H∑
h=1

[
Φh
(
θ̂
0
T

)
−Φh

(
θ0
)]}

q̃T0 . (33)

Now using results in Lemmas S2 and S3, given in the online supplement, we have∥∥∥∥∥H−1/2
H∑
h=1

µ̂T0,h(θ̂
0
T )

∥∥∥∥∥ ≤ ∥∥s′∥∥ ‖q̃T0‖H−1/2
∥∥∥∥∥
H∑
h=1

[
Φh
(
θ̂
0
T

)
−Φh

(
θ0
)]∥∥∥∥∥

≤ K
∥∥s′∥∥ ‖q̃T0‖H−1/2

(
H∑
h=1

hλh−1T

)∥∥∥θ̂0T − θ0∥∥∥ , (34)

where K is a fixed constant. Using (A.3) in Lemma S3, we have∥∥∥Φ(θ̂
0
T )
∥∥∥ ≤ ∥∥Φ(θ0)

∥∥+ aT

∥∥∥θ̂0T − θ0∥∥∥ ,
where aT =

∥∥∥∂Φ
(
θ̄
0
T

)
/∂θ′

∥∥∥, and elements of θ̄0T lie on the line segment joining θ0 and θ̂0T .
Considering that θ̄0T →p θ

0, and by Assumption 4,
∥∥∂φij(θ)/∂θ′

∥∥ for all i and j exist and are
bounded, then it must also follow that aT is bounded in T . Hence, recalling that under Assumption

3,
√
T
∥∥∥θ̂0T − θ0∥∥∥ = Op(1), then λT ≤ λ + aTT

−1/2, where
∥∥Φ (θ0)∥∥ ≤ λ, and aT is bounded in

T . In the case where H is fixed and T →∞,∣∣∣∣∣H−1/2
(

H∑
h=1

hλh−1T

)∣∣∣∣∣ ≤ H−1/2
H∑
h=1

h
(
λ+ aTT

−1/2
)h−1

→ H−1/2
H∑
h=1

hλh−1 < K, as T →∞.

Using this result in (34) and noting that under Assumptions 3 and 5, ‖q̃T0‖ is bounded in T,
and

∥∥∥θ̂0T − θ0∥∥∥ = Op
(
T−1/2

)
, then under the null of no policy change, H0, for a fixed H and as

T →∞, we have
∥∥∥∥∥H−1/2

H∑
h=1

µ̂T0,h(θ̂
0
T )

∥∥∥∥∥→p 0, as required.

Consider now the case where H rises with T and the rate of increase of H in relation to T is

governed by the joint asymptotic condition 1. Note also that under Assumption 2b, λ < 1. Then

using (A.4) and (A.5) in Lemma S4 we have

H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλH

)
, (35)
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H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λ)2

(
H − 1 + λ

1− λ

)
+Op

(
T−1/2

)
+Op

(
HλH

)
. (36)

Using (35) in (34), and (36) we obtain

H−1/2
H∑
h=1

µ̂T0,h(θ̂
0
T ) = Op

(
H−1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
, under H0 (37)

Therefore, under H0, H−1/2
H∑
h=1

µ̂T0,h(θ̂
0
T ) tends to zero in probability if H = κT ε, for ε ≤ 1/2, as

H and T →∞ (the joint asymptotic condition 1).

To derive the distribution of d̂H(θ̂
0
T ), using Lemma S1, in the online supplement, we first

note that

1

H

H∑
h=1

vT0,h =
1

H

H∑
h=1

h−1∑
j=0

s′Φj(θ1)Γ(θ1)uT0+h−j =
1

H

H∑
j=1

s′AH−j (Φ1) Γ(θ1)uT0+h−j , (38)

where

AH−j (Φ1) = Ikz+1 + Φ1 + Φ2
1 + ...+ ΦH−j

1 = (Ikz+1−Φ1)
−1 (Ikz+1−ΦH−j+1

1 ). (39)

To simplify notations we have used Φ1 for Φ(θ1). Considering that under H0, µ̂T0,H(θ̂
0
T ) =

Op(T
−1/2), we have

V ar
(√

Hd̂H(θ̂
0
T )
)

= ω20q + o(1),

where

ω20q = s′

H−1 H∑
j=1

AH−j (Φ1) Σε(θ
1)A′H−j (Φ1)

 s,
and Σε(θ

1) = E(εT+jε
′
T+j) = Γ(θ1)ΣuΓ(θ1)′. Therefore, the mean policy effect test statistic

can be written as

T̄H =

√
Hd̂H(θ̂

0
T )√

ω̂20q

, (40)

where ω20q can be estimated using pre-intervention sample as:

ω̂20q = s′

H−1
H∑
j=1

AH−j
(
Φ(θ̂

0
T )
)

Σε

(
θ̂
0
T

)
A′H−j

(
Φ(θ̂

0
T )
) s, (41)

where

AH−j
(
Φ(θ̂

0
T )
)

= Ikz+1 + Φ(θ̂
0
T ) +

[
Φ(θ̂

0
T )
]2

+ ...+
[
Φ(θ̂

0
T )
]H−j

(42)

Σε

(
θ̂
0
T

)
= T−1

T0∑
t=M

[
q̃t −Φ(θ̂

0
T )q̃t−1

] [
q̃t −Φ(θ̂

0
T )q̃t−1

]′
, (43)

Under the null hypothesis of policy ineffectiveness, and assuming that the underlying RE model

is correctly specified and the innovations εT0+h = Γ(θ)uT0+h for h = 1, 2, ...,H are normally

distributed, then for a fixed H and as T → ∞, we have T̄H →d N(0, 1). For moderate values of

H, small departures from normality of the innovations over the post-intervention sample might

not be that serious for the validity of the test.
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The power of T̄H test The power of the T̄H test, defined by (40), depends on the probability

limit of T̄H under the alternative hypothesis that θ1 6= θ0. Using (23) and suppressing the

dependence on (θ̂
0
T ) for simplicity, we have

√
Hd̂H = H−1/2

H∑
h=1

µ̂T0,h +H−1/2
H∑
h=1

vT0,h. (44)

The random component, H−1/2
H∑
h=1

vT0,h, has a limiting distribution with mean zero and a fi-

nite variance both under the null and the alternative hypotheses. Therefore, for the test to be

consistent H−1/2
H∑
h=1

µ̂T0,h must diverge to infinity with H. Under H1 : θ1 6= θ0, we have

H−1/2
H∑
h=1

µ̂T0,h = −s′
{
H−1/2

H∑
h=1

[
Φh
(
θ̂
0
T

)
−Φh

(
θ1
)]}

q̃T0

= s′

{
H−1/2

H∑
h=1

[
Φh
(
θ1
)
−Φh

(
θ0
)]}

qT0 − s′
{
H−1/2

H∑
h=1

[
Φh
(
θ̂
0
T

)
−Φh

(
θ0
)]}

q̃T0 .

(45)

But it has been already established that (see (37))

s′

{
H−1/2

H∑
h=1

[
Φh
(
θ̂
0
T

)
−Φh

(
θ0
)]}

q̃T0 = Op

(
H−1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
.

Hence, under H1

H−1/2
H∑
h=1

µ̂T0,h = s′

{
H−1/2

H∑
h=1

[
Φh
(
θ1
)
−Φh

(
θ0
)]}

q̃T0+Op

(
H−1/2T−1/2

)
+Op

(
H−1/2λH

T−1/2

)
.

Now set Φ1 = Φ
(
θ1
)
and Φ0 = Φ

(
θ0
)
, and note that

H∑
h=1

Φh
1 = Φ1(Ikz+1−ΦH

1 )(Ikz+1−Φ1)
−1.

Under Assumption 2, (Ikz+1 −Φ1)
−1 exists and is finite and ΦH

1 → 0 as H →∞. Hence,

H−1/2
H∑
h=1

Φh
(
θ1
)

= H−1/2Φ1(Ikz+1 −ΦH
1 )(Ikz+1 −Φ1)

−1 → 0, as H →∞.

Similarly, H−1/2
H∑
h=1

Φh
(
θ0
)
→ 0, with H, and H−1/2

H∑
h=1

µ̂T0,h = op(1), under the alternative

hypothesis. Hence, H−1/2
H∑
h=1

µ̂T0,h →p 0 under both the null and the alternative hypotheses as

T and H → ∞, subject to the joint asymptotic condition 1. Therefore, the internal dynamics
of the RE model do not contribute to the power of the policy ineffectiveness test for T and H

large. Thus tests based on the average policy effects, d̂H , will not be consistent in the case of

stationary DSGE models. In such cases, the best that can be hoped for is to base the test of the

policy ineffectiveness on a short post-intervention sample and accept that the test is likely to be

sensitive to the specifications of the post-intervention disturbances, uT0+h, h = 1, 2, ...,H.
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4.2 Tests of policy interventions that change the steady state

In this case the counterfactual values of yT0+h are defined by (17) and the associated policy effects

by (16). Hence, the estimated values of policy effects can be computed as

d̂T0+h(θ̂
0
T ,α

0) = yT0+h − ŷ0T0+h
= yT0+h − y∗T0+h

(
α0
)
− s′Φh

(
θ̂
0
T

) [
qT0 − q∗T0

(
α0
)]
, for h = 1, 2, ...,H, (46)

where α0 is the pre-intervention parameter vector of the steady state.14 Furthermore, since it is

only the steady state parameters that change, θ1 = θ0, and post-intervention realized values of

yT0+h are given by

yT0+h = y∗T0+h
(
α1
)

+ s′Φh(θ0)
[
qT0 − q∗T0

(
α0
)]

+
h−1∑
j=0

Φj
(
θ0
)
Γ(θ0)uT0+h−j , for h = 1, 2, ...,H,

which if used in (46) yields

d̂T0+h(θ̂
0
T ,α

0) =
[
y∗T0+h

(
α1
)
− y∗T0+h

(
α0
)]
− s′

[
Φh
(
θ̂
0
T

)
−Φh(θ0)

] [
qT0 − q∗T0

(
α0
)]

+
h−1∑
j=0

Φj
(
θ0
)
Γ(θ0)uT0+h−j .

It is clear that under the null of no policy change, Hα
0 : α1 = α0, d̂T0+h(θ̂

0
T ,α

0) has the same

asymptotic distribution as the one obtained in sub-sections 4.1.1 and 4.1.2 for the case when the

policy intervention applied to θ. The main difference between the two types of policy change

relates to the their power under the alternative hypothesis. In the present case the power of the

test depends on δT0+h = y∗T0+h
(
α1
)
− y∗T0+h

(
α0
)
for h = 1, 2, ...,H, and rises with H, so long as

the policy change is permanent, namely |δT0+h| remains bounded away from zero for all h. This

contrasts to the power of the test when the policy change only affects deviations from the steady

state.

5 Simulated policy analysis using a new-Keynesian model

5.1 The model

In this section we illustrate the performance of policy tests based on mean effects using simulations

from a standard three equation New Keynesian DSGE model. Similar results can be obtained for

the multi-horizon version of the test.

The new-Keynesian (NK) model is calibrated using parameter estimates from the literature

and we assume that there is no parameter or specification uncertainty. The variables, which are

measured in deviations from their steady states, are R̃t = Rt − R∗t , the interest rate deviation,
14Here we are assuming that policy parameters affecting the steady state are known, which is the case when we

consider changes to the inflation target. The analysis can be readily modified to allow for possible uncertainty in
the policy parameters of the steady state.
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ỹt = yt− y∗t , log real output gap, and π̃t = πt− π∗t , the deviation of inflation rate from target. As

above, the policy intervention takes place at time T0, with a post-intervention sample, T0+1, T0+

2, ..., T0 + H. After setting out the model, we first consider an intervention which changes the

DSGE parameters of the Taylor rule, but not the steady state, and examine the size and power

of the test. Then we consider an intervention where the steady state inflation target is changed

as well as the parameters of the Taylor rule. The model, in terms of deviations from steady state

is

R̃t = δRR̃t−1 + (1− δR)(ψππ̃t + ψyỹt) + uRt, (47a)

ỹt = δyỹt−1 + κE(ỹt+1 |It )− σ
[
R̃t − E(π̃t+1 |It )

]
+ uyt, (47b)

π̃t = δππ̃t−1 + βE(π̃t+1 |It ) + γỹt + uπt, (47c)

which is of the form (1) where q̃t = (R̃t, ỹt, π̃t)
′, ut = (uRt, uyt, uπt)

′,

A0 =

 1 −(1− δr)ψy −(1− δr)ψπ
σ 1 0
0 −γ 1

 , A1 =

 0 0 0
0 κ σ
0 0 β

 , A2 =

 δR 0 0
0 δy 0
0 0 δπ

 ,

(48)

and V ar(ut) = diag(σ2uR, σ
2
uy, σ

2
uπ).

The parameters are calibrated using estimates from the DSGE literature. Parameters of (47c)

are calibrated based on average estimates from eight major economies as summarized in Table 5 of

Dees et al (2009). The parameters of (47b) and the long run parameters of the Taylor rule, (47a),

are calibrated using the results in Dennis (2009). The calibrated values of θ0 are summarized in

Table 1 below. The standard deviations of the errors were all set equal to 0.005, or half a percent

per quarter, which is similar to the US values found in Dees et al. (2009).

Table 1. Pre-intervention parameter values, θ0, used in the Monte Carlo Analysis
σ = 0.065 κ = 0.57 β = 0.65 γ = 0.045 ψπ = 1.5 ψy = 0.5

δy = 0.42 δπ = 0.34 δR = 0.7 σuπ = 0.005 σuy = 0.005 σuR = 0.005

The solution for these calibrated parameters is given by15

q̃t= Φ(θ0)q̃t−1 + Γ(θ0)ut, (49)

Φ(θ0) =

 0.65 0.13 0.20
−0.17 0.62 −0.05
−0.06 0.08 0.47

 , Γ(θ0) =

 0.93 0.31 0.60
−0.24 1.49 −0.15
−0.08 0.19 1.39

 . (50)

The dynamic responses of the model to the effects of monetary policy, demand and supply shocks

are documented in the online supplement, where we also provide policy impulse response functions.
15This solution is obtained using the iterative back-substitution procedure advanced in Binder and Pesaran (1995).

See the online supplement for further details.
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The results are as to be expected and to save space will not be discussed here. Instead we focus

on the small sample properties of the policy ineffectiveness test proposed in the paper.

We consider four separate policy interventions, in which each of the parameters of the Taylor

rule are changed one at a time, leaving the other parameters unchanged. Intervention 1A increases

the interest rate persistence in the Taylor Rule, δR, from 0.7 to 0.9. Intervention 1B reduces δR

from 0.7 to 0.25. Intervention 1C increases the inflation coeffi cient in the Taylor rule, ψπ, from

1.5 to 2.5. Intervention 1D increases the output coeffi cient in the Taylor rule, ψy, from 0.5 to 1.

The values of θ1 that are changed under alternative policy interventions are given in Table 2.

Table 2: Policy interventions
Interventions∗ θ0 θ1

1A δR = 0.7 δR = 0.9
1B δR = 0.7 δR = 0.25
1C ψπ = 1.5 ψπ = 2.5
1D ψy = 0.5 ψy = 1.0

* The other elements of θ1 are kept at their pre-intervention values.

The initial values, q̃T0 , play an important role and should reflect a sensible combination of

values of interest rate, inflation and output. One possible approach is to set q̃T0 equal to the

impact effects of IRFs. For example, one could set q̃T0 to q̃R,T0 = σuRΓ(θ0)eR, which is the

impact effect of a monetary policy shock. Similarly, for the demand and supply shocks qT0 can

be set to q̃y,T0 = σu yΓ(θ0)ey and q̃π,T0 = σuπΓ(θ0)eπ, respectively, where ey = (0, 1, 0)′ and

eπ = (0, 0, 1)′. These values are given by the columns of Γ(θ0) defined by (50). Multiples of the

effects of such shocks represent different degrees of deviations from equilibrium. The power of the

policy ineffectiveness test will then be an increasing function of the extent to which, at the time

of the policy change, the economy has deviated from steady state.

5.2 Tests for interventions that do not change the steady state

We computed size and power of the policy ineffectiveness tests using the calibrated values of θ0,

for different initial states, q̃T0 . We generated values of q̃T0+h, h = 1, 2, ...,H, for horizons H = 8,

and H = 24 from (49) assuming u
(b)
t ∼ IIDN(0,Σu),for b = 1, 2, .., 2000, replications, where

Σu = diag(σ2uR, σ
2
uy, σ

2
uπ).16 For replication b the policy effects are simulated as

d̂
(b)
T0+h

= q̃
(b)
T0+h

−Φh
(
θ0
)
q̃T0 , (51)

for h = 1, 2, ...,H. The policy mean effect is calculated as d̂
(b)

H = H−1
H∑
h=1

d̂
(b)
T0+h

, and the test

statistic as T (b)d,H =
√
Hd̂

(b)

H /ω̂0q, where

ω̂20q =

H−1
H∑
j=1

AH−j
(
Φ(θ0)

)
Σε

(
θ0
)
A′H−j

(
Φ(θ0)

) ,

16More specifically, q̃
(b)
T0+h

= Φ(θ)q̃
(b)
T0+h−1 + Γ(θ)u

(b)
T0+h

, for h = 1, 2, ..., H, with q̃
(b)
T0
= q̃T0 .
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and

AH−j
(
Φ(θ0)

)
= Ikz+1 + Φ(θ0) + Φ2(θ0) + ...+ ΦH−j(θ0).

Table 3 shows the size and power of the policy ineffectiveness tests against four alternative

policy interventions, two evaluation horizons and three initial states. The size of the test was

calculated with q̃
(b)
T0+h

generated using θ0, and the power was obtained with q̃
(b)
T0+h

generated

using one of the four alternative policy interventions which change θ0 to θ1A, ...,θ1D, as set out

in Table 2. The initial states are given in different rows of the Table. The rows labelled q̃R,T0

give the rejection frequencies for the initial state corresponding to the effects of a one standard

deviation monetary policy shock; the rows labelled q̃y,T0 refer to a demand shock and the rows

labelled q̃π,T0 refer to a supply shock.

Table 3: Size, θ0, and power of policy ineffectiveness tests

against 4 alternatives θ1A,θ1B,θ1C ,θ1D ; horizons H = 8, 24; 3 initial states

Size (θ0) Power (θ1A) Power (θ1B) Power (θ1C) Power (θ1D)

R̃ ỹ π̃ R̃ ỹ π̃ R̃ ỹ π̃ R̃ ỹ π̃ R̃ ỹ π̃

H = 8

q̃R,T0 0.05 0.05 0.05 0.03 0.20 0.13 0.13 0.04 0.08 0.11 0.06 0.03 0.07 0.02 0.07
q̃y,T0 0.04 0.05 0.05 0.03 0.18 0.12 0.11 0.04 0.07 0.10 0.06 0.03 0.07 0.01 0.06
q̃π,T0 0.05 0.04 0.05 0.04 0.20 0.12 0.12 0.04 0.08 0.12 0.05 0.03 0.07 0.02 0.06

H = 24

q̃R,T0 0.05 0.05 0.05 0.04 0.25 0.17 0.11 0.04 0.09 0.10 0.06 0.02 0.07 0.02 0.07
q̃y,T0 0.05 0.06 0.05 0.04 0.25 0.16 0.11 0.03 0.09 0.10 0.05 0.02 0.07 0.01 0.06
q̃π,T0 0.05 0.04 0.05 0.04 0.24 0.18 0.12 0.04 0.09 0.10 0.07 0.02 0.07 0.02 0.06

Notes: The rows labelled q̃R,T0 set the initial state q̃T0 = σuRΓ(θ0)eR. Similarly for q̃y,T0 = σuyΓ(θ
0)ey, and

q̃π,T0 = σuπΓ(θ0)eπ. eR = (1, 0, 0), ey = (0, 1, 0), eπ = (0, 0, 1). The alternative hypotheses are set out in Table 2.

The test sizes are close to the nominal value of 5%. The power is highest for intervention, 1A,

where the degree of persistence of the Taylor rule increases from δR = 0.7, to δR = 0.9. Even in

case 1A the power is not high. At H = 8 the highest power is 20% for testing the effect on yt and

using the initial state, q̃R,T0 or q̃π,T0 . At H = 24 the highest power is 25% for testing the effect on

yt. The test has little power against the other three types of interventions.17 Whereas the test has

power against the increase in persistence of the Taylor rule it has less power against the reduction

in the persistence of the Taylor rule for output and inflation because the variables return to zero

quickly. The test also has little power against changes in the coeffi cients of inflation and output

in the Taylor rule because they have relatively little effect on the other variables on impact.

Figure 1 shows the rejection frequency for intervention 1A (increasing the degree of interest

rate smoothing) as a function of the initial deviation from steady state, measured in standard

17Similar outcomes are also reported by Rudebusch (2005) who, in the context of the Lucas Critique, shows that
the apparent policy invariance of reduced forms is consistent with the magnitude of historical policy shifts and the
relative insensitivity of the reduced forms of plausible forward looking macroeconomic specifications to policy shifts.
However, here we use formal tests based on structural models.
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deviations of monetary policy shock, q̃R,T0 . The rejection frequencies increase with the deviation

of the initial value from zero, and are roughly symmetric for positive and negative values. The

rejection frequencies are highest for output, intermediate for inflation and lowest for interest

rates. The results are similar, but with lower rejection frequencies, when the initial states are set

to multiples of demand and supply shocks.

Figure 1. Rejection frequencies for intervention 1A (increasing δR from 0.7 to 0.9)

with the initial states at k standard deviations of q̃R,T0, and H = 8 quarters

These simulations confirm the theoretical results. The size of the test is correct. The effect of

the policy intervention depends on the dynamics, reductions in the degree of persistence reduce

the effect of changing the policy parameters. The power of the test depends on the state of the

economy at the time of the policy intervention. In our example, the test has some power against

increases in the persistence of the Taylor rule, but not against the other policy changes considered.

However, the effects of all these policy changes are transitory, none have any effect on the steady

states.

5.3 Tests for interventions that change the steady state inflation target

Consider now interventions that change the steady state. As an example, suppose the policy

maker changes the target rate of inflation which we assume constant and denote by π∗. We

assume the announcement of the change in the inflation target is credible and fully understood.18

To represent this intervention in the New Keynesian example, where the variables are measured

as deviations from steady state, we need to re-write the inflation and interest rate deviations

in terms of their realized values which we denote by πt and Rt. Note that πt = π̃t + π∗ and

Rt = R̃t + (r∗+π∗), where π∗ is the target rate of inflation, and r∗ denotes the steady state value

of the real interest rate. In terms of the realized values of inflation and interest rates (πt and Rt)

and deviations for the output gap (ỹt), we have

18Kulish and Pagan (2017) consider a change in inflation target when there is both perfect and imperfect credi-
bility.
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Rt = (1− δR) [r∗ + (1− ψπ)π∗] + δRRt−1 + (1− δR)(ψππt + ψyỹt) + uRt

ỹt = −σr∗ + δyỹt−1 + κE(ỹt+1 |It )− σ [Rt − E(πt+1 |It )] + uyt

πt = (1− δπ − β)π∗ + δππt−1 + βE(πt+1 |It ) + γỹt + uπt.

and setting q̊t = (Rt, ỹt, πt)
′, we obtain

A0̊qt = A1Et(̊qt+1) + A2̊qt−1 + A3 + ut,

where

A3 =

 (1− δR) [r∗ + (1− ψπ)π∗]
−σr∗

(1− δπ − β)π∗

 .

The other matrices, A0, A1, and A2, are given as before by (48). The solution in terms of q̊t is

given by

q̊t = [I3 −Φ(θ)] q̊∗ + Φ(θ)̊qt−1 + Γ(θ)ut,

where q̊∗ = (r∗ + π∗, 0, π∗)′, and Φ(θ) and Γ(θ) are defined as before.

Suppose now that the policy intervention at time T0 took the form of changing the inflation

target from π0∗ to π
1
∗. In this case the policy effects are given by

d̂T0+h = s′̊qT0+h − s′Φh
(
θ̂
0
T

)
q̊T0 − s′

h−1∑
j=0

Φj
(
θ̂
0
T

) [
I3 −Φ

(
θ̂
0
T

)]
q̊0∗,

where q̊0∗ = (r + π0∗, 0, π
0
∗)
′

d̂T0+h = s′̊qT0+h − s′Φh
(
θ̂
0
T

)
q̊T0 − s′

{
I3 −Φh

(
θ̂
0
T

)}
q̊0∗, (52)

Where only the inflation target is changed the power of the test rises with
√
Hs′

(̊
q1∗ − q̊0∗

)
=

√
H
(
π1∗ − π0∗

)
(1, 0, 1)′s, and tends to unity in the case of inflation and the nominal interest rate,

as to be expected, and has no power as H →∞, for real output deviations, ỹt. Nevertheless, the
change in the inflation target does have short run effects on real output. This is reflected in the

policy impulse response function and the test outcomes. The policy impulse response function

when only the inflation target is changed is given by

PIRF (h, π1∗ − π0∗, θ) =
(
π1∗ − π0∗

){
I3 −Φh (θ)

} 1
0
1

 , for h = 1, 2, ...,H. (53)

It is clear that in the limit as H →∞, the PIRF tends to
(
π1∗ − π0∗

)
(1, 0, 1)′, which also confirms

that in the NK model only nominal values are affected in the long run by changes in the inflation

target.

The short run impacts of changes in the inflation target can be illustrated using the parame-

terization given above. For this purpose we consider two scenarios, a reduction of π0∗ from 2% to
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1% per quarter and an increase of π0∗ from 1% to 2% per quarter. Initially we do not change any

of the other policy parameters, which are kept at the baseline values listed in Table 1. Figure 2a

gives the responses to the reduction and 2b to the increase in the inflation target. In the case of

a reduction, inflation falls more than the interest rate, raising the real interest rate on impact to

0.44% and thus depressing output. The real interest rate and output return to zero, leaving the

nominal interest rate and inflation rate at the new target 1% lower after about seven quarters.

When the target rate of inflation is increased the effects are reversed: inflation jumps more than

interest rates, the real interest rate falls on impact to -0.44%, temporarily raising output.

Figure 2: Policy impulse response functions for changes in target rates of inflation

2a. Reduction of π0∗ = 2% to π1∗ = 1% per quarter

2b. Increase of π0∗ = 1% to π1∗ = 2% per quarter

In the case where there is both a change in the steady state and a change in the policy rule

parameters, the policy impulse response functions are given by

PIRF (h, π1∗,θ
1, π0∗,θ

0) =
[
Φh
(
θ1
)
−Φh

(
θ0
)]

q̊T0 +
{

I3 −Φh
(
θ1
)}

q̊1∗ −
{

I3 −Φh
(
θ0
)}

q̊0∗,

=
{

Φh
(
θ1
)
−Φh

(
θ0
)} (̊

qT0 − q̊0∗
)

+
[
I3 −Φ

(
θ1
)]h (̊

q1∗ − q̊0∗
)

where

q̊0∗ =

 r + π0∗
0
π0∗

 , q̊1∗ − q̊0∗ =
(
π1∗ − π0∗

) 1
0
1

 .
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More specifically, for a unit monetary policy shock at the point of intervention, we set q̊T0 =

q0∗ + σuRΓ(θ̂0T )eR, and hence

PIRF (h, π1∗,θ
1, π0∗,θ

0) = σuR

{
Φh
(
θ1
)
−Φh

(
θ0
)}

Γ(θ0)eR (54)

+
(
π1∗ − π0∗

) [
I3 −Φ

(
θ1
)]h 1

0
1

 .

which reduces to (53) when only the inflation target is changed. Similar expressions can be

obtained when the initial state is set to values of q̊ that arise on impact from demand or supply

shocks.

We now consider combining the change in the inflation target with changes in the degree of

inflation smoothing. Figure 3a presents the effects of simultaneously reducing the inflation target

from 2% to 1% and increasing the inflation smoothing parameter, δR, from 0.7 to 0.9, intervention

1A above, with the initial state set to q̊R,T0 . This intervention causes inflation to drop sharply,

overshooting its steady state of 1%, hitting 1.55% after about 4 quarters. The real interest rate

rises to 1.25%, depressing output, before the variables return to their steady state. Figure 3b

shows that increasing the target rate of inflation has similar but the opposite effects. Comparing

the reduction in the target rate of inflation in Figure 3a with that in Figure 2a, the increased

interest rate smoothing has resulted in a much larger loss of output. Whereas in Figure 4a the

maximum loss of output was 0.3% per quarter, in figure 5a the maximum loss was 1.1%, in both

cases around quarter 3.

Figure 3: Policy impulse response functions for changes in target rates of inflation

plus increased interest rate smoothing

Intervention 1A : δR from 0.7 to 0.9, initial state q̊R,T0

3a. Reduction of π0∗ = 2% to π1∗ = 1% per quarter
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3b. Increase of π0∗ = 1% to π1∗ = 2% per quarter

Figure 4 shows the results when the change in inflation target is combined with reduced

interest rate smoothing. For a credible reduction in the inflation target and very little interest rate

smoothing, the interest rate and the inflation rate reduce by almost exactly the same amount and

output hardly falls. With an increase in the inflation target and reduced interest rate smoothing,

inflation increases more than interest rates and the lower real interest rates provides a boost to

output. While the results are specific to this parameterisation and the assumption of credibility,

it seems likely that less interest rate smoothing is appropriate when reducing the target rate of

inflation, as in Figure 4a, since this causes less output loss, and more interest rate smoothing

seems more appropriate when increasing the target rate of inflation, since this provides a bigger

boost to output.

Figure 4: Policy impulse response functions for changes in target rates of inflation

plus reduced interest rate smoothing

Intervention 1B : δR from 0.7 to 0.25, initial state q̊R,T0

4a. Reduction of π0∗ = 2% to π1∗ = 1% per quarter
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4b. Increase of π0∗ = 1% to π1∗ = 2% per quarter

We now consider the effect on size and power of the policy ineffectiveness test in detecting the

effects of changes in the target rate of inflation on inflation, output deviations and the interest

rate. We only consider the case where the inflation target is reduced from 2% to 1% per quarter,

the results for an increase were almost identical. We consider two interventions. In the first, called

θ1E , the interest rate smoothing parameter is left unchanged at δR = 0.7, in the second, called

θ1F , δR is increased to 0.9 at the same time as the reduction in the inflation target is announced.

If the target rate is reduced without any other policy changes, the power of the tests based on the

nominal interest rate and the inflation rate are quite high and rise substantially as the horizon

of the test is increased from H = 8 to 24 quarters. In contrast, and as to be expected noting

the PIRFs depicted in Figure 2, the test has little power for output, since the effect of a change

in the inflation target on the real output is small and transitory. Under intervention θ1F , when

there is both a change in the inflation target and an increase in interest rate smoothing, the power

of the test based on inflation outcomes is increased, but for interest rates the power is reduced

relative to the case θ1E , since the increased smoothing means that interest rates do not change as

much. The increased smoothing causes a larger movement in real interest rates as noted above

and this causes a greater effect on output hence a higher power in detecting the effects of the

policy change on realized values of output deviations. Whereas for interest rates and inflation,

the power increases as the horizon is extended, for output deviations, which is moving back to its

steady state value of zero, the power falls as the horizon is extended.
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Table 4: Size and power of policy ineffectiveness tests against reducing the inflation

target only (θ1E) and when inflation target reduction is accompanied by a rise in

interest rate smoothing (θ1F )- Horizons H = 8, 24; 3 initial states (̊qT0)

Size (θ0) Power (θ1E) Power (θ1F )

R ỹ π R ỹ π R ỹ π

Initial states H = 8

q̊R,T0 0.05 0.05 0.05 0.29 0.07 0.72 0.13 0.39 0.90
q̊y,T0 0.06 0.05 0.06 0.26 0.07 0.68 0.17 0.33 0.86
q̊π,T0 0.05 0.06 0.06 0.28 0.06 0.70 0.16 0.35 0.88

H = 24

q̊R,T0 0.06 0.04 0.05 0.73 0.07 0.99 0.65 0.30 0.98
q̊y,T0 0.05 0.06 0.05 0.73 0.05 0.99 0.70 0.28 0.98
q̊π,T0 0.05 0.05 0.05 0.71 0.05 0.99 0.68 0.29 0.99

Notes: See notes to Table 3. Alternative hypothesis θ1E assumes that the inflation target is reduced from

π0∗ = 2% to π1∗ = 1% per quarter. Alternative hypothesis θ1F combines the reduction of the inflation target from

π0∗ = 2% to π1∗ = 1% per quarter with a higher degree of interest rate smoothing, raising δR from 0.7 to 0.9.

6 Concluding remarks

In this paper we propose formal tests for two types of policy intervention in the context of DSGE

models. One involves a change in a policy parameter that does not alter the steady state, as is

standard in the literature, the other a change in a policy parameter that only alters the steady

state. Two versions of the policy ineffectiveness tests are considered, a multi-horizon version and

a mean effect version.

The tests are based on the differences, over a given policy evaluation horizon, between the

post-intervention realizations of the target variable and the associated counterfactual outcomes

based on the parameters estimated using data before the policy intervention. The power of the

policy ineffectiveness tests depends on the degree of persistence of the model and the deviation

from steady state at the time of the intervention, but the power will not go to unity as the

evaluation horizon increases, that is the tests will not be consistent, unless the policy intervention

changes the steady state.

The formal tests considered in the paper are important for policy analysis as they highlight

the importance of allowing for future shocks in policy evaluations. A policy impulse response

function is also proposed which is more relevant when the policy intervention is formulated in

terms of a change in a policy parameter, as compared to standard impulse response function that

considers the deterministic effects of a policy shock, defined as a one standard deviation change

in a structural disturbance of interest. The policy ineffectiveness tests that we have developed

take account of deterministic as well as random components of policy outcomes and are likely to

be more relevant for ex post policy analyses.
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Online Supplement
Tests of Policy Interventions in DSGE Models

by
M. Hashem Pesaran and R.P. Smith

S1 Statement and proof of lemmas

Lemma S1 Let A be a k × k matrix and xT+h−j a k × 1 vector, and suppose that Ik−A is

invertible, then

H−1
H∑
h=1

h−1∑
j=0

AjxT+h−j = H−1
H∑
j=1

(
Ik+A + ...+ AH−j)xT+j

= H−1 (Ik−A)−1
H∑
j=1

(
Ik −AH−j+1)xT+j

= (Ik−A)−1

H−1 H∑
j=1

xT+j

− (Ik−A)−1

H−1 H∑
j=1

AH−j+1xT+j

 .

Proof. The result follows by direct manipulation of the terms.

Lemma S2 Suppose that the k×k matrices A and B have bounded spectral norms ‖A‖ ≤ λ and
‖B‖ ≤ λ, for some fixed positive constant λ. Then∥∥∥Ah −Bh

∥∥∥ ≤ hλh−1 ‖A−B‖ , for h = 1, 2, .... (A.1)

Proof. We establish this result by backward induction. It is clear that it holds for h = 1. For

h = 2, using the identity

A2 −B2 = A(A−B) + (A−B)B,

the result for h = 2 follows∥∥A2 −B2
∥∥ ≤ (‖A‖+ ‖B‖) ‖A−B‖ = 2λ ‖A−B‖ .

More generally, we have the identity

Ah −Bh = Ah(A−B) + (A−B)Bh + A(Ah−2 −Bh−2)B.

Now suppose now that (A.1) holds for h− 2, and using the above note that∥∥∥Ah −Bh
∥∥∥ ≤ ∥∥∥Ah−1

∥∥∥ ‖A−B‖+ ‖A−B‖
∥∥∥Bh−1

∥∥∥+ ‖A‖
∥∥∥Ah−2 −Bh−2

∥∥∥ ‖B‖
≤ ‖A‖h−1 ‖A−B‖+ ‖A−B‖ ‖B‖h−1 + ‖A‖

∥∥∥Ah−2 −Bh−2
∥∥∥ ‖B‖

≤ 2λh−1 ‖A−B‖+ λ2
∥∥∥Ah−2 −Bh−2

∥∥∥
≤ 2λh−1 ‖A−B‖+ λ2

[
(h− 2)λh−3 ‖A−B‖

]
≤ hλh−1 ‖A−B‖ .
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Hence, if (A.1) holds for h − 2, then it must also hold for h. But since we have established that

(A.1) holds for h = 1 and h = 2, then it must hold for any h.

Lemma S3 Consider the k × k matrix A(θ) = (aij(θ)), where k is a finite integer and aij(θ),

for all i, j = 1, 2, .., k, are continuously differentiable real-valued functions of the p × 1 vector of

parameters, θ ∈ Θ. Suppose that aij(θ) has finite first order derivatives at all points in Θ, and

assume that θ̂T is a
√
T consistent estimator of θ0. Then∥∥∥A(θ̂T )−A(θ0)

∥∥∥ ≤ aT ∥∥∥θ̂T − θ0∥∥∥ , (A.2)∥∥∥A(θ̂T )
∥∥∥ ≤ ∥∥A(θ0)

∥∥+ aT

∥∥∥θ̂T − θ0∥∥∥ , (A.3)

where aT =
∥∥∂A

(
θ̄T
)
/∂θ′

∥∥ is bounded in T , and elements of θ̄T∈ Θ lie on the line segment

joining θ0 and θ̂T

Proof. Consider the mean-value expansions

aij

(
θ̂T

)
− aij

(
θ0
)

=
∂aij

(
θ̄T
)

∂θ′

(
θ̂T − θ0

)
, for i, j = 1, 2, ..., k,

where elements of θ̄T lie on the line segment joining θ0 and θ̂T . Given that θ̂T is consistent for

θ0, it must also be that θ̄T →p θ
0, as T →∞. Collecting all the k2 terms we have

A(θ̂T )−A(θ0) =

(
∂A

(
θ̄T
)

∂θ′

)[
Ik ⊗

(
θ̂T − θ0

)]
,

where ⊗ denotes the Kronecker matrix product. Hence

∥∥∥A(θ̂T )−A(θ0)
∥∥∥ ≤ ∥∥∥∥∥∂A

(
θ̄T
)

∂θ′

∥∥∥∥∥∥∥∥θ̂T − θ0∥∥∥ ,
∥∥∥A(θ̂T )

∥∥∥ =

∥∥∥∥∥A(θ0) +

(
∂A

(
θ̄T
)

∂θ′

)[
Ik ⊗

(
θ̂T − θ0

)]∥∥∥∥∥ ≤ ∥∥A(θ0)
∥∥+

∥∥∥∥∥∂A
(
θ̄T
)

∂θ′

∥∥∥∥∥∥∥∥θ̂T − θ0∥∥∥ .
The results (A.2) and (A.3) now follow since θ̄T →p θ

0, and by assumption the derivatives

∂aij
(
θ0
)
/∂θ′ exist and are bounded in T .

Lemma S4 Suppose that λT = λ+T−1/2aT , aT > 0 and bounded in T , λT 6= 1, H = κT ε, where

ε ≤ 1/2, 0 < λ < 1, and κ is a positive fixed constant. Then

H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλH

)
, (A.4)

and
H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λ)2

(
H − 1 + λ

1− λ

)
+Op

(
T−1/2

)
+Op

(
HλH

)
. (A.5)
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Proof. We first note that
H∑
h=1

hλh−1T =
∂

∂λT

(
H∑
h=1

λhT

)

=
1− λHT

(1− λT )2
− HλHT

(1− λT )
, (A.6)

Also since λT = λ+Op
(
T−1/2

)
H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλHT

)
. (A.7)

But,

λHT =
(
λ+ T−1/2aT

)H
= λH

(
1 +

T−1/2aT
λ

)H
= Op

(
λHedTH/

√
T
)
, (A.8)

where dT = aT /λ, which is also bounded in T . Finally, H/
√
T = T 1−ε/2 and for ε ≤ 1/2, edTH/

√
T

will be bounded in T . Using this result in (A.7) yields (A.4), as desired. Similarly,

H∑
h=1

h−1∑
j=0

jλj−1T =
H∑
h=1

[(
1− λhT

)
− h(1− λT )λh−1T

(1− λT )2

]

=
1

(1− λT )2

[
H∑
h=1

[(
1− λhT

)
− h(1− λT )λh−1T

]]

=
1

(1− λT )2

[
H −

H∑
h=1

λhT − (1− λT )
H∑
h=1

hλh−1T

]
.

Using (A.6) we have

H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λT )2

{
H − λT − λH+1T

1− λT
− (1− λT )

[
1− λHT

(1− λT )2
− HλHT

(1− λT )

]}
.

Now using (A.8) and recalling that λT = λ+Op
(
T−1/2

)
, we obtain (A.5).

S2 The numerical solution of the DGSE model used in Section 5

The unique solution of the New Keynesian model is given by (see also equation (2) in the paper):

q̃t= Φ(θ)q̃t−1 + Γ(θ)ut,

whereΦ(θ) solves the quadratic matrix equationA1Φ
2(θ−A0Φ(θ)+A2 = 0, and Γ= [A0 −A1Φ(θ)]−1 .

Φ(θ) can be solved numerically by iterative back-substitution procedure which involves iterating

on an initial arbitrary choice of Φ(θ) say Φ(θ(0)) = Φ(0) using the recursive relation

Φ(r) = [Ik−(A−10 A1)Φ(r−1)]
−1(A−10 A2).

See Binder and Pesaran (1995) for further details. The iterative procedure is continued until

convergence using the criteria ‖ Φ(r) −Φ(r−1) ‖max≤ 10−6.
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S3 Standard and Policy Impulse Response Functions for the new-
Keynesian model

Here we first provide impulse response functions, IRFs for the effects of monetary policy, demand

and supply shocks in the new-Keynesian model. As Figure S1 shows a contractionary monetary

policy shock raises interest rates and reduces output and inflation, with output falling by more

than inflation. A positive demand shock increases all three variables; output by the most, then

interest rates, and then inflation. A negative supply shock, increases inflation, the interest rate

rises to offset the higher inflation, but not by as much as inflation and output falls. The impact

effects of the monetary policy shock are given by the first column of Γ(θ0) defined by equation

(50) of the paper, while the impact effects of the demand and supply shocks are given by its second

and third columns. It is clear that in terms of IRFs the behaviour of the model is as expected.

Turning to the policy impulse response function, PIRF, discussed in Section 3.1 of the paper,

as noted in the text it is important that the choice of q̃T0 reflects a sensible combination of values

of interest rate, inflation and output. One possible approach is to set q̃T0 equal to the impact

effects of IRFs. For example, one could set q̃T0 to q̃R,T0 = σuRΓ(θ0)eR, which is the impact

effect of a monetary policy shock. Similarly, for the demand and supply shocks qT0 can be set to

q̃y,T0 = σu yΓ(θ0)ey and q̃π,T0 = σuπΓ(θ0)eπ, respectively, where ey = (0, 1, 0)′ and eπ = (0, 0, 1)′.

These values are given by the columns of Γ(θ0) defined by equation (50) of the paper. We will

also consider multiples of the effects of such shocks as representing different degrees of deviations

from equilibrium. The power of the policy ineffectiveness test will then be an increasing function

of the extent to which, at the time of the policy change, the economy has deviated from steady

state.

Figure S2 shows PIRFs for the effects of changing the degree of persistence (or the interest rate

smoothing) associated with the Taylor rule, Figure S2a shows the effect of intervention 1A and

Figure S2b of 1B. These are the only policy changes which have much effect. This is consistent

with the theoretical results that it is the dynamics that are central to policy having mean effects.

Intervention 1A increases the degree of persistence from δR = 0.7, to δR = 0.9. This causes the

interest rate to rise and output and inflation to fall initially, with a maximum effect after about

three periods before returning to zero. Intervention 1B reduces the degree of persistence from

δR = 0.7, to δR = 0.25. This has the opposite effect causing the interest rate to fall, by more than

it rose in case 1A, and output and inflation to rise by rather less than they fell under case 1A.

The initial effects are the same as the values of
[
Φ
(
θ1
)
−Φ

(
θ0
)]
for the two cases. When the

degree of persistence is low as in intervention 1B, the variables return to zero much faster, making

the mean effect of policy much smaller. This is reflected in the power of the policy ineffectiveness

tests discussed in the text.
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Figure S1: Impulse response functions for interest rates, R̃t, output, ỹt, and

inflation π̃t deviations

S1a. Monetary Policy Shock

S1b. Demand Shock

S1c. Supply Shock
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Figure S2: Policy impulse response functions: q̃R,T0 = σuRΓ(θ0)eR.

S2a. Intervention 1A : δR = 0.7, to δR = 0.9

S2b. Intervention 1B : δR = 0.7, to δR = 0.25
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