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Abstract

This paper introduces an adaptive algorithm for time-varying autoregressive models

in the presence of heavy tails. The evolution of the parameters is determined by the score

of the conditional distribution, the resulting model is observation-driven and is estimated

by classical methods. In particular, we consider time variation in both coefficients and

volatility, emphasizing how the two interact with each other. Meaningful restrictions are

imposed on the model parameters so as to attain local stationarity and bounded mean

values. The model is applied to the analysis of inflation dynamics with the following

results: allowing for heavy tails leads to significant improvements in terms of fit and

forecast, and the adoption of the Student-t distribution proves to be crucial in order to

obtain well calibrated density forecasts. These results are obtained using the US CPI

inflation rate and are confirmed by other inflation indicators, as well as for CPI inflation

of the other G7 countries.
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1 Introduction

In the last two decades there has been an increasing interest in models with time-varying

parameters (TVP) for the analysis of macroeconomic variables. Stock and Watson (1996) have

renewed the interest in this area by documenting the widespread forecasting gains of TVP

models.1 Recently, Cogley and Sargent (2005), Primiceri (2005), Stock and Watson (2007)

have highlighted the importance of allowing for time variation in the volatility as well as in the

coefficients.2 Yet, most of the studies so far have considered TVP models under the assumption

that the errors are Normally distributed. Although this assumption is convenient, it limits the

ability of the model to capture the tail behavior that characterizes a number of macroeconomic

variables. As the recent recession has shown, departures from Gaussianity are important so as

to properly account for the risks associated with black swans (see, e.g., Cúrdia et al. 2014).

This paper considers an adaptive autoregressive model where the errors are Student-t dis-

tributed. Following Creal et al. (2013) and Harvey (2013), the parameters’ variation is driven

by the score of the conditional distribution. In this framework, the distribution of the innova-

tions not only modifies the likelihood function (as, e.g., in the t-GARCH of Bollerslev, 1987),

but also implies a different updating mechanism for the TVP. In this regard, Harvey and

Chakravarty (2009) highlight that the score-driven model for time-varying scale with Student-

t innovations leads to a filter that is robust to outliers, while Harvey and Luati (2014) show

that the same intuition holds true in models with time-varying location. The resulting model

is observation-driven. As opposed to parameter-driven models, the parameters’ values are ob-

tained as functions of the observations only, the likelihood function is available in closed form,

and thus the model is estimated by classical methods.3

As stressed by Stock (2002) in his discussion of Cogley and Sargent (2002), estimating TVP

models without controlling for the possible heteroscedasticity is likely to overstate the time

variation in the coefficients (see also Benati, 2007). In this paper, we consider time variation

in both coefficients and volatility, emphasizing how the two interact with each other in a score-

driven model. Moreover, we show how to impose restrictions on the model’s parameters so as

to achieve local stationarity and bounded long-run mean. Both restrictions, commonly used in

applied macroeconomics, have not yet been considered in the context of score-driven models.

The adaptive model in this paper is related to an extensive literature that has investigated

ways of improving the forecasting performance in presence of instability. Pesaran and Tim-

merman (2007), Pesaran and Pick (2011) and Pesaran et al. (2013) focus on optimal weighting

scheme in the presence of structural breaks. Giraitis et al. (2014) propose a non-parametric

estimation approach of time-varying coefficient models. The weighting function implied by

these models are typically monotonically decreasing with time, a feature which they share with

1Attempts to take into account the well-known instabilities in macroeconomic time series can be traced
back to Cooley and Prescott (1973, 1976), Rosenberg (1972), and Sarris (1973).

2D’Agostino et al. (2013) highlight the relative gains in terms of forecast accuracy of TVP models compared
to the traditional constant parameter models in a multivariate setting.

3In the parameter-driven models the dynamics of the parameters is driven by an additional idiosyncratic
innovations. Therefore, analytical expressions for the likelihood function are hardly available in closed form,
and the use of computational-intensive simulation methods is usually required (see, e.g., Koopman et al., 2016).

2



traditional exponential weighted moving average forecasts (see e.g. Cogley, 2002). Our model

features time variation in location and scale, and Student-t errors. This implies a non-linear

filtering process with a weighting pattern that cannot be replicated by the procedures proposed

in the literature. The benefit of this approach is that observations that are perceived as out-

liers, based on the estimated conditional location and scale of the process, have effectively no

weight in updating the TVP. The resulting pattern of the weights is both non-monotonic and

time-varying since it is a function of the estimated TVP. Therefore, the model implies a faster

update of the coefficients in periods of high volatility. Furthermore, in periods of low volatility,

even deviations from the mean that are not extremely large in absolute terms are more likely

to be ‘classified’ as outliers. As such, they are disregarded by the filter, which is robust to

extreme events. Those model’s features are important in the analyis of macroeconomic time

series that display instability and changes in volatility. This is demonstrated empirically with

an application to inflation dynamics.

Understanding inflation dynamics is key for policy makers. In particular, modern macroe-

conomic models highlight the importance of forecasting inflation for the conduct of monetary

policy (see e.g. Svensson, 2005). There are at least three reasons why our model is particu-

larly suitable for inflation forecasting. First, simple univariate autoregressive models have been

shown to work well in the context of forecasting inflation (see Faust and Wright, 2013). Second,

Pettenuzzo and Timmermann (2015) show that TVP models outperform constant-parameters

models and that models with small/frequent changes, like the model proposed in this paper,

produce more accurate forecasts than models whose parameters exhibit large/rare changes.

Third, while important changes in the dynamic properties of inflation are well documented

(see e.g. Stock and Watson, 2007), most of the empirical studies are typically framed in a

Bayesian setup and present a number of shortcomings: (i) it is computationally demanding;

(ii) when restrictions are imposed to achieve stationarity, a large number of draws need to be

discarded, therefore leading to potentially large inefficiency4; (iii) Normally distributed errors

are usually assumed. The latter point is particularly relevant as it is well known, at least

since the seminal work of Engle (1982), that the distribution of inflation displays non-Gaussian

features. The adaptive model presented in this paper tackles all these shortcomings.

When used to analyze inflation, our model produces reasonable patterns for the long-run

trend and the underlying volatility. By introducing the Student-t distribution, we make the

model more robust to short lived spikes in inflation (for instance in the last part of the sam-

ple). At the same time, the specifications with Student-t innovation display substantially more

variation in the volatility. In practice, with Student-t innovations the variance is less affected

by the outliers and it can conveniently adjust to accommodate changes in the dispersion of

the central part of the distribution. The introduction of heavy tails improves the fit and the

out-of-sample forecasting performance of the model. The density forecasts produced under a

Student-t distribution improve substantially with respect to those produced by both its Gaus-

4Koop and Potter (2011) and Chan et al. (2013) deal with local stationarity and bounded trend in the
context of TVP models, and they discuss the computational costs associated with those restrictions in a Bayesian
setting.
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sian counterpart and the model of Stock and Watson (2007) and a TVP-VAR with stochastic

volatility (see e.g. D’Agostino et al., 2013). In fact, well calibrated density forecasts are ob-

tained only when we allow for heavy tails. While the baseline analysis is centered on US CPI

inflation, which is noticeably noisier and harder to forecast than other measures of inflation, we

show that the improvement in the performance of density forecasting is also obtained for other

inflation measures, such as those derived from the PCE and GDP deflators. Given the different

inflation dynamics across countries (Cecchetti et al., 2007), we also examine the performance

of the model in the analysis of CPI inflation of other countries, and we confirm that allowing

for heavy tails provides substantial improvements in terms of density forecasting performance

for all the G7 countries.

The paper is organized as follows. Section 2 describes the score driven autoregressive model

with Student-t distribution. Section 3 shows how to impose restrictions on the parameters to

guarantee stationarity and a bounded long-run mean. Section 4 applies the model to the study

of inflation. Section 5 concludes.

2 Autoregressive model with heavy tails

Consider the following TVP model:

yt = x′tφt + εt, εt ∼ tυ(0, σ
2
t ), t = 1, ..., n. (1)

For xt = (1, yt−1, ..., yt−p)
′ we have an autoregressive (AR) model of order p with intercept,

where φt = (φ0,t, φ1,t, ...., φp,t)
′ is the vector of time-varying coefficients.5 The disturbance εt

follows a Student-t distribution with υ > 2 degrees of freedom, zero conditional mean, and

conditional variance σ2
t .

Following Creal et al. (2013) and Harvey (2013), we postulate the score-driven dynamics

for the TVP. Specifically, given ft = (φ′t, σ
2
t )
′, we opt for a random walk law of motion:

ft+1 = ft +Bst, st = S−1
t Ot, (2)

where B contains the static parameters regulating the updating speed. The driving mechanism

is represented by the scaled score vector:

Ot =
∂`t
∂ft

, St = −E
[
∂2`t
∂ft∂f ′t

]i
, i = 0, 1/2, 1, (3)

`t = log p(yt|ft, Yt−1, θ) is the predictive log-likelihood for the t−th observation conditional on

the estimated vector of parameters ft, the information set Yt−1 = {yt−1, ...., y1}, and the vector

of static parameters θ. In the empirical application the scaling matrix is chosen to be equal to

the inverse of the Fisher Information matrix, i.e. i = 1 and St = It. Other scaling matrix can

be used as discussed in Creal et al. (2013).

5The results derived here are valid for additional regressors in the vector xt.
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The scaled score vector, st, is the sole driving mechanism characterizing the dynamics of

ft, this implies that the resulting model is observation-driven; i.e. the parameters’ values are

obtained as functions of the observations only, the likelihood function is available in closed

form and the model can be estimated by maximum likelihood (ML). The vector ft is updated

so as to maximise the local fit of the model at each point in time. Specifically, the size of

the update depends on the slope and curvature of the likelihood function. As such, the law of

motion (2) can be rationalized as a stochastic analogue of the Gauss–Newton search direction

for estimating the TVP (Ljung and Soderstrom, 1985). Blasques et al. (2014) show that

updating the parameters using the score is optimal, as it locally reduces the Kullback-Leibler

divergence between the true conditional density and the one implied by the model.

In principle, the law of motion (2) could have been defined more generally by letting the

parameters follow ft+1 = ω + Aft + Bst, but this would have implied estimating a larger

number of static parameters. The use of a random walk law of motion (2) is supported by

a large consensus in macroeconomics. As shown in Lucas (1973), most policy changes will

permanently alter the agents’ behaviour, as such the model’s parameters will systematically

drift away from the initial value without returning to the mean value (see also Cooley and

Prescott, 1976). Furthermore, in a context of learning expectations (Evans and Honkapohja,

2001), the parameters’s updating rule is consistent with (2). In the empirical application we

find it useful to set restrictions to avoid the proliferation of the static parameters. In particular,

we restrict the matrix B to be diagonal, with the first p + 1 elements are equal to κφ and the

last one equal to κσ. For a given scaled score, these two scalar parameters regulate the speed

of updating for the coefficients and volatility respectively.

Model (1) elaborates on previous works. Harvey and Chakravarty (2009) consider time-

varying volatility with Student-t errors, highlighting how the score-driven model leads to a

filtering which is robust to a few large errors. Harvey and Luati (2014) uncover a similar

mechanism in models for time-varying location. More recently, Blasques at al. (2014) consider

an AR(1) specification without intercept and with constant variance, focusing on the stochastic

properties of the implied non-linear model. Our specification features time variation for both

coefficients and volatility, we emphasize the interaction between the two and their relevance

for modelling macroeconomic data.

2.1 The score vector

The conditional log-likelihood of model (1) is equal to

`t = c(η)− 1

2
log σ2

t −
(
η + 1

2η

)
log

[
1 +

η

1− 2η

ε2
t

σ2
t

]
, (4)

with

c (η) = log

[
Γ

(
η + 1

2η

)]
− log

[
Γ

(
1

2η

)]
− 1

2
log

(
1− 2η

η

)
− 1

2
log π,

5



where η = 1/υ is the reciprocal of the degrees of freedom, and Γ(·) is the Gamma function. The

score-driven model with non-Gaussian innovations not only modifies the likelihood function,

as in the t-GARCH of Bollerslev (1987) and Fiorentini et al. (2003), but it will also imply

a different filtering process for the TVP. Given the specification (3), the score vector (st =

[s′φ,t, sσ,t]
′) can be specialized in sφ,t driving the coefficients, and sσ,t driving the volatility:

sφ,t =
(1− 2η)(1 + 3η)

(1 + η)

1

σ2
t

S−1
t xtwtεt, (5)

sσ,t = (1 + 3η)(wtε
2
t − σ2

t ), (6)

where St = 1
σ2
t
(xtx

′
t),

6 and

wt =
(1 + η)

(1− 2η + ηζ2
t )

(7)

(see Appendix A for details).

A crucial role in the score vector is played by the weights, wt, which are function of the

(squared) standardized prediction error, that is ζt = εt/σt. Figure 1 provides intuition for the

role played by those weights in the updating mechanism governing the model’s parameters.

The left panel plots the magnitude of wt as a function of the standardized prediction error, ζt.

Whereas the right panel plots the influence function (see e.g. Maronna et al. 2006), obtained

as the product of the weights and the standardized error itself. The magnitude of wt depends

on how close the observation yt is to the center of the distribution: a small value of wt is more

likely with low degrees of freedom and low dispersion of the distribution. The weights robustify

the updating mechanism because they downplay the effect of large (standardized) forecast

errors given that, in the presence of heavy tails, such forecast errors are not informative of

changes in the location of the distribution. The right panel of Figure 1 shows how the score

is a bounded function of the prediction errors. Furthermore, the volatility, σt, plays a role in

re-weighting the observations, and as such the past estimated variance has a direct impact on

the coefficients’ updating rule.7 Therefore, the score vector (5)-(7) implies a double weighting

scheme; i.e. the observation are weighted both over time and across realizations.

[Insert Figure 1]

2.2 An example: the time-varying level model

A simplified version of model (1) helps clarify the impact of such double weighting mech-

anism. Assume that xt = 1 and wt is exogenously given. This specification leads to an

integrated moving-average (IMA(1,1), hereafter) model with TVP. In particular, the moving

average (MA) coefficient is equal to (1− κθwt), and the conditional mean can be expressed as

µt+1 = κθ

t∑
j=0

γj ỹt−j, ỹt−j = wt−jyt−j, (8)

6S−1t = σ2
t (xtx

′
t)

+ denotes the Moore-Penrose generalized inverse.
7This is not the case under Gaussian distribution (see section 2.3).
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where

γj =
t∏

k=t−j+1

(1− κθwk), γ0 = 1, κθ = κφ
(1− 2η)(1 + 3η)

(1 + η)
(9)

(see details in Appendix A). The observations are weighted to be robust to the impact of

extreme events through the weights wt, and simultaneously are discounted over time by γj.

Similarly, the time-varying variance can be expressed as

σ2
t+1 = κζ

t∑
j=0

(1− κζ)j ε̃2
t−j, ε̃2

t−j = wt−jε
2
t−j, (10)

where κζ = κσ(1 + 3η) regulates how past observations are discounted.8 In the presence of an

outlier (i.e. wt = 0), the MA coefficient collapses to one and the model becomes a pure random

walk.

In practice, the weights wt are not exogenously given but they depend non-linearly on the

current observation and the past estimated parameters through ζt = εt/σt. Therefore, under

the Student-t distribution the score-driven model leads to a non-linear filter that cannot be

analytically expressed as in the last two formulae. It is worth noticing that, since coefficients

and volatility are simultaneously updated, prediction errors of the same size are weighted

differently according to the conditional mean and volatility. Specifically, in periods of low

volatility, a given prediction error is more likely to be categorized as part of the tails and

therefore it is downweighted. This mechanism reinforces the smoothness of the filter in periods

of low volatility. Conversely, the updating is quicker in periods of high volatility, with prediction

errors reflecting to a greater extent into parameters changes. As such, the weighting pattern is

non-monotonic and time-varying, and it cannot be easily replicated by the weighting schemes

which are meant to improve the forecasts under structural breaks, such as the ones proposed

by Pesaran et al. (2013) or Giraitis et al. (2014).

At this stage it is interesting to compare the filter implied by the our model to the one

of Stock and Watson (2007, SW hereafter). In particular, SW consider the local level model

with stochastic volatilities in both disturbances, this leads to a reduced form model equal to

an IMA(1,1) with TVP driven by a convolution of the two stochastic volatilities. In the SW

model the MA coefficient drifts smoothly as a result of the random walk specification for the

stochastic volatilities, while in our score-driven model (with Student-t) the MA coefficient is

more volatile, because the time variation depends on the weights, wt, and the model discounts

the signal from the observations that are perceived as outliers.

8For large t we can interpret the estimated trend as the low-pass filter κθ/[1− (1− κθwt)L] applied to the
weighted observations, ỹt. Similarly, the estimated variance can be expressed by the filter κζ/[1 − (1 − κζ)L]
applied to the weighted (squared) prediction errors, ε̃2t .
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2.3 The Gaussian case

The Gaussian case is recovered by setting η = 0 (i.e. υ →∞). In this case wt = 1, ∀t, and

the TVP are estimated by the following filter:

φt+1 = φt + κφ
1

σ2
t

S−1
t xtεt, (11)

σ2
t+1 = σ2

t + κσ(ε2
t − σ2

t ). (12)

Equation (11) resembles the Kalman filter, since the updated parameters react to the pre-

diction error εt scaled by a gain, depending on σ2
t and xt.

9 Equation (12) is equal to the

integrated GARCH model. In contrast to the Student-t case, the volatility term vanishes in

the law of motion of the coefficients, and the estimated conditional variance does not directly

affect the estimated time-varying coefficients.10

2.4 Estimation

Given the score vector (5)-(7) at time t, all the elements of the model (1)-(2) are known.

Hence, the conditional likelihood (4) can be analytically evaluated, and the log-likelihood

function is constructed as L(θ) =
∑n

t=1 `t, so that the vector θ is estimated as θ̂ = arg maxL(θ).

Following Creal et al. (2013, sec. 2.3), we conjecture that
√
n(θ̂ − θ) → N (0,Ω), where Ω is

numerically evaluated at the optimum.11

3 Model restrictions

Applications of TVP models often require imposing restrictions on the parameter’ space.

For instance, an AR model is usually restricted so that the implied roots lie within the unit

circle at each point in time. In the Bayesian framework, such constraints are usually imposed by

rejection sampling, which however leads to heavy inefficiencies (see e.g. Koop and Potter, 2011,

and Chan el al., 2013). When restrictions are implemented within a score-driven setup, the

model can still be estimated by ML without the need of computational demanding simulation

methods. Specifically, the TVP vector is reparametrized as follows

f̃t = ψ(ft), (13)

9As opposed to standard parameter-driven models, both the signal and the parameters are driven by the
prediction error. The model is therefore similar to the single source error model of Casalas et al. (2002) and
Hyndman et al. (2008).

10Note that this feature is not shared by the equivalent parameter-driven models (see e.g. Stock, 2002).
11Harvey (2013, sec 4.6) derives the consistency and asymptotic normality of a model with time-varying

volatility only. Harvey and Luati (2014) prove the same for a model with time-varying level only. Blasques
et al. (2014) studied the asymptotic properties of AR(1) model with time-varying coefficient and constant
volatility. The asymptotic properties for a model with time variation in both the conditional mean and the
conditional variance has not been established yet. This goes beyond the scope of this paper.
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where ft is the unrestricted vector of parameters we model, while f̃t, is the restricted vector

of interest with respect to which the likelihood function is expressed. The function ψ(·),
also known as link function, is assumed to be time-invariant, continuous, invertible and twice

differentiable. The vector ft continues to follow the updating rule (2), and the corresponding

score results in:

st = (Ψ′tStΨt)
−1Ψ′tOt, (14)

where Ψt = ∂f̃t
∂f ′t

is the Jacobian of ψ(·), while Ot and St are the gradient and the scaling

matrix expressed with respect to f̃t. In practice, we model ft = h(f̃t), where h(·) is the inverse

function of ψ(·), and Ψt is needed to apply the chain rule when we compute the score. Given

past information, Ψt is a deterministic function whose role is to re-weight the score such that

the restrictions are satisfied at each point in time.

Specifically, for model (1) we have that f̃t = (φ0,t, φ
′
t
, σ2

t )
′, where φ

t
= (φ1,t, ..., φp,t)

′, and

ft = (α0,t, α
′
t, γt)

′, where αt = (α1,t, ..., αp,t)
′. The next sub-sections describe in detail how

to impose restrictions on the autoregressive coefficients φ
t

and the intercept φ0,t, in order to

achieve local stationarity and bounded long-run mean of the process. The variance is always

constrained to be positive using the exponential function, σ2
t = exp(2γt), this implies that

γt = log σt. Given the the partition of ft and f̃t, it is useful to specialize the Jacobian matrix

as follows:

Ψt =


∂φ0,t
∂α0,t

∂φ0,t
∂α′t

∂φ
t

∂α0,t

∂φ
t

∂α′t

0

0′ 2σ2
t

 , (15)

where ∂φ0,t
∂α0,t

and 2σ2
t are scalars, ∂φ0,t

∂α′t
and

∂φ
t

∂α0,t
are 1× p and p× 1 vectors respectively,

∂φ
t

∂α′t
is a

p× p matrix, and 0′ is row vector of zeros.

3.1 Imposing local stationarity

The Durbin-Lenvinson (DL) algorithm maps the autoregressive coefficients (ARs) into the

partial autocorrelations (PACs). Local stationarity, which implies that at each point in time

the AR model has stable roots, is imposed by restricting the PACs within the unit circle.12

Notation 1 Given the vector of ARs φ
t

= (φ1,t, ..., φp,t)
′ ∈ Rp, zt = (z1,t, ..., zp,t)

′ ∈ Cp

denotes the corresponding vector of roots, and ρt = (ρ1,t, ..., ρp,t)
′ ∈ Rp is the corresponding

vector of PACs. Rp and Cp are the real and the complex domain respectively. Recall that

αt = (α1,t, ..., αp,t)
′ ∈ Rp is the unrestricted counterpart of φ

t
.

Definition 1 Model (1) is locally stationary if φ
t
∈ Sp, ∀t, where Sp is the stationary hyper-

plane where all the roots are inside the unit circle, i.e. |zj,t| < 1, ∀t. Furthermore, φ
t
∈ Sp if

and only if |ρj,t| < 1, ∀t.

12Note that the logistic transformation considered by Blasques et al. (2014) is a special case of the general
transformation considered here.
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Definition 1 extends the results in Bandorff-Nielsen and Schou (1973) and Monahan (1984)

to the case of time-varying coefficients. For more details on locally stationary processes see

Dahlhaus (2012).

Assumption 1 Υ(·) is a continuous (invertible) and differentiable function mapping αt ∈ Rp

into ρt ∈ Sp; i.e. ρj,t = Υ(αj,t), such that ρj,t < |1|, ∀t. Consequently,
∂Υ(αt)

∂α′t
= diag

[
∂Υ(αj,t)

∂αj,t

]
.

In the application we use the Fisher transformation, i.e. Υ(αj,t) = tanhαj,t, this implies

that αj,t = arctanh ρj,t, and
∂Υ(αj,t)

∂αj,t
= (1− ρ2

j,t).

Definition 2 Φ(·) is the continuous (invertible) and differentiable function mapping the PACs

into the ARs, i.e. φ
t

= Φ(ρt). Such function is obtained by the Durbin-Levinson (DL) algo-

rithm:

φi,kt = φi,k−1
t − ρk,tφk−i,k−1

t , i = 1, ..., k − 1, k = 2, ..., p, (16)

with φ1,1
t = ρ1,t and φk,kt = ρk,t. For k=p we have that φj,t = φi,pt .

Corollary 1 Given Definitions 1-2, and Assumption 1, ψs(·) = Φ[Υ(·)] is the function ensur-

ing the model is the locally stationarity. Specifically, ψs(·) maps αt ∈ Rp into φ
t
∈ Sp; i.e.

φ
t

= ψs(αt). The Jacobian of ψs(·) is equal to:

∂φ
t

∂α′t
=
∂φ

t

∂ρ′t

∂ρt
∂α′t

⇒ ∂ψs(αt)

∂α′t
=
∂Φ(ρt)

∂ρ′t

∂Υ(αt)

∂α′t
. (17)

Theorem 1 Given Definition 2, the Jacobian
∂φ

t

∂ρ′t
= ∂Φ(ρt)

∂ρ′t
is equal to the last element of the

following recursion:

Γk,t =

[
Γ̃k−1,t bk−1,t

0′k−1 1

]
, Γ̃k−1,t = Jk−1,tΓk−1,t, k = 2, ..., p, (18)

where

bk−1,t = −



φk−1,k−1
t

φk−2,k−1
t

...

φ2,k−1
t

φ1,k−1
t


, Jk−1,t =



1 0 · · · 0 −ρk,t
0 1 0 −ρk,t 0
...

. . .
...

0 −ρk,t 0 1 0

−ρk,t 0 · · · 0 1


,

φj,k−1
t are the elements of (16), and for k even the central element of Jk−1,t is equal to (1−ρk,t).

The recursion is initialized with J1,t = (1− ρ2,t), and Γ1,t = 1.

Proof. See Appendix A.

Corollary 1 defines the link function through which we impose the stationarity restriction,

and Theorem 1 defines the Jacobian of function Φ(·) in Definition 2. When the time-varying

intercept φ0,t is included without restrictions, the remaining elements of the Jacobian matrix

(15) are: ∂φ0,t
∂α0,t

= 1 and ∂φ0,t
∂α′t

=
(

∂φ
t

∂α0,t

)′
= 0′.
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3.2 Bounded trend

Sometimes it may be the case that one wants to discipline the model so as to have a bounded

long-run mean (see e.g. Chan et al., 2013). Following Beveridge and Nelson (1981), a stochastic

trend can be expressed in terms of long-horizon forecasts. For a driftless random variable, the

Beveridge-Nelson trend is defined as the value to which the series is expected to converge once

the transitory component dies out (see e.g. Benati, 2007 and Cogley et al. 2010).

Definition 3 Given Definition 1, the local-to-date t approximation of the unconditional (time-

varying) mean of model (1) is:

µt =
φ0,t

1−
∑p

j=1 φj,t
, ∀t. (19)

As a result, the detrended component, ỹt = (yt − µt), follows a locally stationary process, i.e.

Pr {limh→∞ Et(ỹt+h) = 0} = 1.

Assumption 2 g(·) is a continuous (invertible) and differential function such that g(·) ∈ [b, b].

In the application we use g(α0,t, b, b) = b+b expα0,t

1+expα0,t
. This implies that α0,t = log

(
µt−b
b−µt

)
and

∂g(α0,t,b,b)
∂α0,t

= (b−b) expα0,t

(1+expα0,t)2
.

Corollary 2 Given Definition 3 and Assumption 2, ψb(·) is the function mapping the unre-

stricted intercept α0,t (and the restricted φ
t
) into its restricted counterpart φ0,t, in order to have

µt ∈ [b, b]; i.e. φ0,t = ψb

(
α0,t, b, b, φt

)
. Specifically,

ψb(·) = g
(
α0,t, b, b

)(
1−

p∑
j=1

φj,t

)
. (20)

Given ψb(·), the elements of the Jacobian matrix (15) are equal to:

∂φ0,t

∂α0,t

=
∂g
(
α0,t, b, b

)
∂α0,t

(
1−

p∑
j=1

φj,t

)
,

∂φ0,t

∂α′t
= −g

(
α0,t, b, b

)
ι′
∂φ

t

∂α′t
,

∂φ
t

∂α0,t

= 0, (21)

where ι′ is a p-dimensional row vector of ones, 0 is a p-dimensional column vector of zeros,

and
∂φ

t

∂α′t
has been outlined in Corollary 1.

Corollary 2 defines the link function, and the corresponding Jacobian, through which the

bounds on the long-run mean are imposed. Putting together (17) and (21), we have all the

elements of the Jacobian matrix (15).

4 Application: inflation forecasting

Autoregressive models have been shown to work well in the context of forecasting inflation

(Faust and Wright, 2013). Moreover, models with TVP have been widely used to highlight the

11



following features of inflation dynamics: (i) substantial time variation in trend inflation (e.g.

Cogley, 2002, and Stock and Watson, 2006); (ii) changes in persistence (Cogley and Sargent,

2002, and Pivetta and Reis, 2007); (iii) time-varying volatility (e.g. Stock and Watson, 2007,

and Clark and Doh, 2014).

In this section we use the score-driven model introduced in Section 2 to capture the key

characteristics of inflation dynamics. In particular, we emphasize the importance of allowing

for t-distributed innovations to the TVP autoregressive specification:

πt = φ0,t +

p∑
j=1

φj,tπt−j + εt, εt ∼ tυ(0, σ
2
t ), (22)

where πt in the annualized quarterly inflation.13 Various specifications of model (22) are con-

sidered in terms of lags (p = 0, 1, 2, 4) and restrictions. The model is reparameterized so that

the variance is positive and, for p > 0, the model is locally stationary as shown in sub-section

3.1. For each specification, we also consider a counterpart with bounds on the long-run trend,

as shown in sub-section 3.2. The choice of the bounds (between 0 and 5) follows the work by

Chan et al. (2013), who argue that a level of the trend inflation that is too low (or too high) is

inconsistent with the central bank’s inflation target.14 Finally, for all specifications we consider

both Gaussian and Student-t distribution of the innovations.

For the case with p = 0, we have a time-varying level that tracks trend inflation. In

particular, with Gaussian innovations trend inflation is estimated by exponential smoothing,

as in Cogley (2002).15

[Insert Table 1]

Table 1 reports the estimates of the various specifications for CPI inflation in the US,

over the period 1955Q1–2012Q4. Besides the estimates of the parameters and their associated

standard error, we also report the value of the log-likelihood function, the Akaike (AIC) and

the Bayesian Information Criterion (BIC).

The trend-only specification (p = 0) features a high estimated value of the smoothing

parameter κφ, implying that past observations are discounted more heavily. This is also true

for the specification with Student-t distribution. By adding the autoregressive component

we obtain substantially smaller estimates of κφ, and this is due to the fact that part of the

persistence of inflation is captured by the autoregressive terms. By contrast, the smoothing

parameter associated with the variance, κσ, is stable and typically higher than κφ. This

13The bulk of the analysis focuses on US CPI inflation. Section 4.3 shows that the superiority of the model
with Student-t distributed errors (in terms of forecasting) carries over different indicators of US inflation (PCE
and GDP deflators), as well as for the CPI inflation of the remaining G7 countries. The data sources are
discussed in Appendix B.

14The bounds correspond to the upper and lower bounds of the posterior in Chan et al. (2013).
15Notice that Cogley (2002) does not include time variation in the variance. However, as it has been shown

in Section 2, under a Gaussian distribution the time-varying variance does not affect directly the estimation
of the trend, but it does affect the estimate of the smoothing parameter. Differently from Cogley (2002), the
smoothing parameter here is estimated at the value that minimizes the (standardized) one-step ahead prediction
error.
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result supports the idea that changes in the volatility are an important feature of inflation

(see e.g. Pivetta and Reis, 2007). Noticeably, the specifications with Student-t distribution

considerably outperform the ones with Gaussian innovations, both in terms of the likelihood

values and information criteria. The estimates of the degrees of freedom υ, between 4 and

6, depict a remarkable difference between the Gaussian and the Student-t specification and

underline the presence of pronounced variations of inflation at the quarterly frequency. Those

variations either arise from measurement errors or are due to the presence of rare events that

structural macroeconomics should explicitly account for, as recently advocated by Cúrdia et

al., 2014. Notice that υ = 5 is also consistent with the calibrated density forecast in Corradi

and Swanson (2006). Overall, the AR(1) model without bounds on the long-run mean and

Student-t distribution slightly outperforms all the other specifications in terms of fitting.

4.1 Trend inflation and volatility

In this sub-section we show that our model is able to capture the salient features of infla-

tion dynamics in terms of trend inflation and volatility. Furthermore, we highlight the main

differences between the specifications with Gaussian and Student-t distribution.

Figure 2 compares the estimates of the long-run trend for the trend-only and the AR(1)

specifications.16 The trend-only specification tracks inflation very closely through the ups

and downs, whereas including lags of inflation leads to a smoother long-run trend estimate.

Therefore, when we allow for intrinsic persistence a substantial part of inflation fluctuations

during the high inflation period (i.e., in the early part of the sample and in the 70s) is attributed

to deviations from the trend. For all specifications we find that, since the mid 90s, the long-run

trend is stable between 2-3%, going slightly over 3% in the run up to the recent recession.

Focussing on differences between the models with Gaussian and Student-t innovations, one

notes that the trend-only model with Student-t innovations is generally less affected by the

sharp transitory movements in the underlying inflation rates. In fact, the updating mechanism

for the TVP under Student-t innovations is such that the observation is downplayed when it

is perceived as an outlier. These differences are most visible in the last part of the sample,

where the underlying trend inflation from the model with Gaussian innovations is often revised

after large, but one-off, releases of inflation.17 Once lagged inflation is included, the differences

between the two specifications are attenuated, both of them deliver a very smooth outline of

trend inflation but some differences are apparent in the last part of the sample. In this latter

case, the outliers still have an impact on the parameters’ estimates for the Gaussian model,

whereas they have a smaller effect under a Student-t distribution. However, the variation in

the time-varying intercept is offset by the variation in the autoregressive coefficients, and the

16Adding more lags has very little impact on the estimates of long-run mean (see Appendix D). Therefore,
the choice of the lag length has an impact only on the shape of the dynamics toward the long-run level, i.e. on
short to medium horizon forecasts.

17Aastveit et. al (2014) have recently reported evidence of instability in standard VARs since the financial
crisis. Even though our results are not directly comparable to theirs, who use a parameter driven model and
investigate the issue in a multivariate setting, it is worth noting that in our setting specifications of the model
that take into account for the presence of outliers are less likely to show pronounced instabilities.
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model ends up delivering rather smooth long-run forecasts.18

Imposing an upper bound on the long-run mean implies a qualitatively similar picture for

the trend-inflation across all specifications (see Appendix D). In this case the trend estimates

are consistent with the idea of a central bank anchoring expectations of trend-inflation to a

fairly stable level over the sample. Trend-inflation rises above 3% in the early ’70s and then

decreases back to a slightly lower level only in the mid ’90s.19

[Insert Figure 2]

Figure 3 reports measures of changes in volatility for the AR(1) specification with Gaus-

sian and Student-t innovations.20 For both specifications it is true that the variance was

substantially higher in the 50s, in the 70s and then again in the last decade. This pattern

of the volatility is consistent with Chan et al. (2013) and Cogley and Sargent (2015). Yet,

there are some interesting differences between the two models. First, the model based on

the Student-t distribution is more robust to single outliers; under Gaussian distribution the

volatility seems to be disproportionately affected by very few observations in the last part of

the sample.21 Second, although the volatility shows very similar low-frequency variation across

different specifications, under Student-t the model displays substantially more high-frequency

movements in the volatility. Note also that under Student-t the observations are weighted such

that large deviations are heavily down-weighted and small deviations are instead magnified.

In other words, under Student-t the variance is less affected by the outliers and it can better

adjust to accommodate changes in the dispersion of the central part of the distribution. The

latter result is particularly important in light of the superior in sample fit of the Student-t spec-

ification reported in the previous sub-section. It is worth noting that most of the literature,

which has mainly focused on the Gaussian distribution, has only reported and emphasized the

importance of the low frequency variation in the volatility.

[Insert Figure 3]

18In order to clarify this point it is instructive to look at what happens to the autoregressive coefficients
in the Gaussian model in response to the inflation shift in 2008. The 2008:Q3 observation (approximately
-9%) is clearly a tail event given the usual inflation variability. This single observation leads to a shift of
the autoregressive coefficient from approx. 0.8 to -0.5. At the same time, the shift in the long-run trend is
slightly less than 1%, as a result of a simultaneous jump in the intercept. Conversely, the long-run trend under
Student-t barely varies as a result of the same episode.

19It is worth noting that the pattern in the long-run trend is quite similar to the one found by Chan et al.
(2013), despite the fact that they use a different model specification and different estimation techniques.

20Small differences can be appreciated when comparing the trend-only model to the AR(p) specifications
(see Appendix D).

21Again, it is worth to report what happens as a result of a single tail event in 2008:Q3: the log-volatility
shifts from approx. 1 to 2-2.5 for the Gaussian model, whereas it moves only up to 1.5 with the Student-t
distribution. Therefore, with a Gaussian model one would retrieve a misleading picture of inflation uncertainty,
which surpasses by far the level reached in the 70s. This result maps into a severely biased estimate of the
densities that are going to be significantly fatter as a result of a single observation.

14



4.2 Forecast evaluation

In this section we assess the forecasting performance of the model. The various specifica-

tion are evaluated against the SW model that is usually considered to be a good benchmark

for inflation forecasting.22 The models are estimated recursively, over an expanding window.

Consistent with a long standing tradition in the learning literature (referred to as anticipated-

utility by Kreps, 1998), we update the coefficients period by period and we treat the updated

values as if they remained constant going forward in the forecast. We first assess the point

forecast using both the root mean squared error (RMSE) and the absolute mean error (MAE).

Later on, we will evaluate the performance of the models in terms of their density forecasts.

4.2.1 Point Forecast

Table 2 reports the results for the point forecast. Despite the well-known performance of the

benchmark model, many of the alternative specifications we consider tend to have lower RMSEs

and MAEs. The differences tend to disappear at longer horizons. The superior forecasting

performance is also statistically significant for many specifications.23 For instance, the AR(4)

model reduces the loss by roughly 15%, both for the one quarter and one year ahead forecast.

Imposing bounds on the long-run mean does not seem to improve the performance of the

various specifications.24 Most importantly, a comparison between the Gaussian and Student-t

models reveals little differences in terms of point forecasts.

[Insert Table 2]

Looking at the relative performance in different sub-samples reveals that the score-driven

models are superior at the beginning and at the end of sample, while the SW model is slightly

better in the low volatile period (from mid-80s to early 2000). None of these differences are

significant using the fluctuation tests of Giacomini and Rossi (2010), highlighting a relatively

high volatility of the forecast errors.

4.2.2 Density Forecast

An important element of any forecast lies in the ability to quantify and convey the out-

come’s uncertainty. This requires a forecast of the whole density of inflation. For instance,

Cogley and Sargent (2015) highlight the relevance of deflation risk, and the prediction of

the latter requires an estimation of the overall density. Table 3 reports the results from the

22The SW model is estimated by Bayesian MCMC methods, and the Gibbs Sampling algorithm is broken
into the following steps: (i) sampling of the variance of the noise component using the independent Metropolis
Hastings as in Jacquier et al. (2002); (ii) sampling of the variance of trend component as in (i); (iii) sampling
of the trend component using the algorithm developed by Carter and Kohn (1994).

23We report the test of Giacomini and White (2006). Despite the expanding window, this test is approx-
imately valid as our model implicitly discount the observations, so that earlier observations are in practice
discarded for the estimates in the late part of the sample that is used to forecast.

24The trend-only model with restricted long-run mean is outperformed by the alternative ones, in particular
at short horizon. However, the relative performance of this specification is severely biased by the inclusions of
the great inflation period (mid 70s-80s).
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density forecast exercise. As highlighted by Diebold et al. (1998), a correctly conditionally

calibrated density forecast produces probability integral transforms (PITs) that are uniformly

distributed.25 For the one step-ahead we evaluate the calibration of the densities looking at

the results of Berkowitz’s (2001) LR test and the nonparametric test of Rossi and Sekhposyan

(2014).26 For horizons beyond the one step-ahead we report the test of Knüppel (2015), which

is robust to the presence of serial correlation of the PITs. The results suggest that, at all hori-

zons, the density forecasts of specifications with Gaussian innovations, as well as for the SW

model, are not well calibrated. In order to understand why this is the case Figure 4 plots the

empirical distribution function (p.d.f.) of the PITs for the AR(1) specification.27 From both

plots it is evident that models with Gaussian innovations tend to produce densities in which

too many realizations fall in the middle of the distribution relative to what we would expect

if the data really were Normally distributed.28 The one step-ahead density forecasts are well

calibrated for all the specifications with Student-t distribution. Two key features are important

to deliver correctly calibrated forecasts. First, the volatility is not affected by observations in

the tail of distribution, thus varying in a way that better captures changes in the dispersion of

the central part of the density. Second, the distribution by nature has a slower decay in the

tail. As such, it allows for higher probability of extreme events. According to Knüppel’s (2015)

test, the multistep density forecasts are well calibrated when we allow for Student-t innovations

and also we impose bounds to the long-run mean. This restriction effectively imposes a tight

anchor to far ahead forecasts, which turns out to be important in order to avoid that too many

realizations fall in the tails of the distribution.

[Insert Table 3]

[Insert Figure 4]

Table 3 reports measures of the relative performance of density forecasts for various models,

evaluating the relative improvements with respect to the SW model. The average logarithm

score (ALS) suggests that the models with Student-t distribution significantly improve the

accuracy of the density forecast and outperform considerably both the SW benchmark as well

as all the specifications with Gaussian errors at all forecasting horizons. We also evaluate

density forecasts looking at the average Continuous Ranked Probability Score (CRPS). The

latter provides a metric for the evaluation of the density that is more resilient in the presence

of outliers (Gneiting and Ranjan, 2007). The models under Student-t innovation continue to

dominate the SW benchmark. Yet, since the CRPS is less sensitive to the realizations falling

at the tails of the forecast density, the performance from the Student-t model are roughly in

25The PITs are also iid for one step ahead forecasts.
26The latter is still valid also in the presence of parameter estimation errors.
27Appendix D reports a similar plot for the other specifications. These figures confirms that only the PITs

of the densities from the adaptive models with Student-t innovations resemble a uniform distribution.
28The histogram of the PITs for the SW model is similar to the one obtained for the score-driven models

with Gaussian distribution, meaning that it produces densities that are overall too wide relative to the optimal
density.
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line with the ones produced by the model under Gaussian innovations under this alternative

scoring metric. The model with Student-t innovations provides a better characterization of the

density at the tail of the distribution. This superiority is clearly highlighted when looking at

the ALS.29

4.2.3 Robustness

Forecasting performance over time. It is possible that the superiority of the heavy tail

specification is not stable over the entire forecasting sample. For instance, the robustness of

the model under a Student-t distribution can potentially delay the updating of the parameters

in presence of a marked, isolated, structural break. In this case, a Gaussian model adapts more

quickly to the new regime, while the Student-t model initially downweighs the observations

occurring after the break. In order to understand whether the improvements under Student-

t are driven by particular episodes, or specific sample periods, as opposed to be stable over

time, Figure 5 reports: (a) the fluctuation test of Giacomini and Rossi (2010) applied to

the ALS (left panel), and (b) the cumulative sum of the log-score (CLS) over time (right

panel). We consider the trend-only specification with Student-t versus the Gaussian case and

the SW model, focussing on the one quarter ahead forecast.30 The value of the Giacomini

and Rossi (2010) statistics is always positive and the CLS is rising. This suggests that the

densities produced by the heavy tails model deliver a consistently higher log-score throughout

the sample. The differences between Gaussian and Student-t innovations are, however, not

statistically significant in the 90s and the CLS shows a slight decline over this period. This is

not surprising since in the 90s inflation has been quite stable and as such we would not expect

considerably different densities produced by the two models.

[Insert Figure 5]

Evaluating the importance of local stationarity restrictions. In the empirical anal-

ysis we have always imposed local stationarity, as a result inflation forecasts are forced to

revert to the time-varying long-run mean. Instead, when local stationarity restrictions are not

enforced, forecasts are in principle allowed to diverge over time. Although one can justify the

imposition of stationarity restrictions on theoretical grounds, a natural question to ask is how

relevant those restrictions are in practice. Table 4 highlights that the density forecasts produced

without imposing stationarity restrictions are roughly in line with the restricted counterpart

only for short-run forecast, i.e. one quarter ahead. However, at the 1 and 2 years horizon the

density forecasts produced by a model that does not impose stationarity restrictions delivers

29The adaptive model developed in this paper delivers a model-consistent way to deal with time-variation in
presence of heavy tailed distribution. Appendix C explores the importance of using an updating mechanism for
the parameters, which is consistent with the score-driven approach as opposed to some ad-hoc specifications.
Specifically, allowing for low degrees of freedom as well as for an updating mechanism that downplays the
importance of outliers are both important ingredients to achieve well calibrated density forecasts.

30The results are qualitatively similar when other autoregressive specifications and longer forecast horizons
are considered. Those results are not reported, but are available upon request.
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significantly worse ALS and CRPS than the restricted counterpart.31

[Insert Table 4]

4.2.4 Comparison with a TVP-VAR with stochastic volatility

In this section we compare the forecasting performance of our adaptive model with that

of an alternative benchmark, the TVP-VAR with stochastic volatility. This model is often

considered the state of the art technology when it comes to modelling macroeconomic time

series facing structural changes. In particular, D’Agostino et al. (2013) have highlighted that

the TVP-VAR produces forecasts that are superior to a number of alternative specifications

(both with fixed coefficients and more parsimonious specifications with TVP). Barnett et al.

(2014) highlight that TVP-VAR leads to large improvements in forecast of UK macroeconomic

time series. Clark and Ravazzolo (2015) compare different volatility specifications, including

specifications with fat tails, and conclude that none dominates the standard stochastic volatility

specification considered as a benchmark in this section.

We consider a VAR with 2 lags and three variables: unemployment, the short term interest

rate, and inflation.32,33 The TVP-VAR produces long-run forecasts that are potentially more

precise than the one produced by a univariate model. In fact, the multivariate setting allows the

TVP-VAR to exploit the information contained in the level of unemployment and the interest

rate in predicting long-run inflation and the associated uncertainty around the forecast. In order

to check for that in this section we consider forecasts of inflation up to 4 years ahead. In order

to save space we focus on a comparison with the AR(1) specification of the adaptive model.

The adaptive model specifications and the TVP-VAR produce very similar point forecasts (see

Table 5). Whereas the Student-t specifications are typically marginally better both in terms

of RMSE and MAE, the difference with respect to the forecasts produced by the TVP-VAR

are never statistically significant according to the Giacomini and White (2006) test.34

[Insert Table 5]

Table 6 turns to the comparison of the models in terms of density forecast. Density fore-

casts produced by the TVP-VAR are well calibrated at the short horizons but fail to correctly

31The densities for the one quarter ahead are correctly calibrated only for the models with Student-t inno-
vations. At longer forecast horizons are typically not correctly calibrated.

32The choice of variables and lag order is in line with the literature (e.g. Primiceri, 2005, and D’Agostino et
al., 2013). The results with a single lag are qualitatively in line with the ones reported in this section and are
available from the authors upon request.

33The TVP-VAR model with stochastic volatility model is estimated by Bayesian MCMC methods. The
Gibbs Sampling algorithm is broken into the following steps: (i) sampling of the time varying coefficients of
the VARs using the algorithm developed by Carter and Kohn (1994); (ii) sampling of the diagonal elements
of the VAR covariance matrix model using the Metropolis Hastings as in Jacquier et al. (2002); (iii) sampling
of the off-diagonal elements of the VAR covariance matrix using the algorithm developed by Carter and Kohn
(1994). The priors of the model are chosen as in Cogley and Sargent (2005).

34Table D.1 in Appendix D reports that there is no statistically significant difference in point forecasts for
any of the autoregressive specifications of the adaptive model.
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characterize the distribution of inflation for longer horizons.35 Moreover, the TVP-VAR pro-

duces CRPS which are broadly in line with the one produced by the adaptive AR(1) model.

However, there are large differences in terms of average log-score (ALS). The ALS associated

with the density produced by the TVP-VAR model is almost always superior to the one pro-

duced by the specification of the model with Gaussian innovations, but it is substantially lower

than most specifications which allow for heavy tails. Those differences are large and always

statistically significant according to the Amisano and Giacomini (2007) test. These results

hold at all forecasting horizons, including forecasts of inflation 4 years ahead.36

[Insert Table 6]

[Insert Figure 6]

Figure 6 reports the cumulative logarithm score of the models for different forecasting

horizons of the AR(1) specification against the TVP-VAR. The log-score differences between

the adaptive model with heavy tail and the TVP-VAR are almost always positive for forecasts

horizons longer than one quarter. For short-run forecasts there are two periods, in the late

70s and the mid-90s, when the TVP-VAR produces higher log-scores. The gains in these two

periods are however overshadowed by the superior performance of the adaptive heavy tail model

for the remaining part of the sample. The differences between the two models seem to be larger

in the last decade of the sample, with inflation showing a more volatile and erratic behaviour.

Overall, the gains in terms of log-score are larger for more distant horizons. Summarizing, in

this comparison a clear ranking emerges: when forecasting inflation the adaptive AR model

with Gaussian errors is dominated by a state-of-the art multivariate TVP benchmark but the

adaptive model with heavy tails proves to be superior in density forecast to both approaches.

Although our univariate model does not allow us to generalize this conclusion to other variables,

it strongly points to potential advantages in combining heavy tails with TVP.

4.3 Additional empirical evidences

4.3.1 Alternative inflation indicators

In the previous section we have shown how the model with Student-t errors produces time

variation in the parameters which is robust to the presence of heavy tails. Furthermore, the

volatility is less affected by the behavior in the tail of the distribution, so that it can better

reflect changes in the spread of the central part of the density. These aspects of the model are

key in order to retrieve a well calibrated density forecasts of US CPI inflation. However, CPI

35Figure D.10 in Appendix D shows the PITs associated to the forecast and highlights that the long-horizons
forecasts of TVP-VAR tend to be too wide so that far too many of the inflation turnout are scored in the middle
part of the distribution.

36Comparing the results in Table 6 to the ones in Table 3, we note that the forecasts from the TVP-VAR
model with stochastic volatility are typically superior to the one produced by the SW model. Moreover, the
superiority of the adaptive model with Student-t innovations holds trough for all the autoregressive alternative
of the model considered in the previous section.
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inflation is notoriously more volatile than other inflation indicators, such as the PCE deflator

and GDP deflator.37 In order to assess whether the improvements of the heavy tails model

carry through for other measures of inflation, we repeat the forecasting exercise using these two

additional measures of inflation. The results we obtain are in line with the evidence reported

in the previous section. To preserve space we focus on the density forecast while the results for

the point forecast are reported in Appendix D.38 Table 7 shows that for these two indicators the

one quarter ahead densities forecast are well calibrated only under the Student-t specifications.

For 1 and 2 years ahead forecast most of the specifications tend to be poorly calibrated. An

inspection of the PITs reveals that the problems are less severe when we allow for the Student-t

distribution. Moreover, the models under Student-t tend to outperform the SW benchmark, as

well as all the Gaussian specifications, and by a considerable margin, when looking at the ALS.

The CRPS tend to be similar between the Gaussian and Student-t specifications and, in all

cases, are lower than the SW benchmark. Interestingly, since those two indicators are smoother

than CPI inflation, adding lags of inflation can in some cases deliver significant improvements

in the density forecast.

[Insert Table 7]

4.3.2 International evidence

Cecchetti et al. (2007) highlight the presence of similarities in inflation dynamics across

countries. Therefore, we investigate the performance of our model for CPI inflation of the

remaining G7 countries. Table 8 reports a summary of the density evaluation focussing on the

trend-only model.39 The results are in line with those reported for the US. Specifically, the

model with heavy tails results in large gains in terms of ALS and similar CRPS. Moreover, for

one quarter ahead forecasts the densities are well calibrated only when the Student-t distri-

bution is allowed. At longer horizons most specifications tend to be not well calibrated. An

inspection of the PITs reveals that the problems are more severe for the model with Normal

innovations.

[Insert Table 8]

5 Conclusion

In this paper we derive an adaptive algorithm for time-varying autoregressive models in

presence of heavy tails. Following Creal et al. (2013) and Harvey (2013), the score of the

37SW report that their model is better suited for those smoothed series.
38The point forecast assessment confirms that various specifications outperform, on average, the SW model.

However, the differences are statistically significant only for few specifications and mainly for short forecast
horizons.

39For the remaining G7 countries the trend-only model with Gaussian distribution is the benchmark specifi-
cation, since in the previous section we have documented how this model performs very similar to the SW model.
In Appendix D, we report the results for the other specifications, excluding the ones with bounded-trend, since
it is not clear a priori what should be the upper and lower bounds for those countries.
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conditional distribution is the driving process for the evolution of the parameters. In this

context, we emphasize the importance of allowing for time variation in both parameters and

volatilities. In the presence of Student-t innovations the updating mechanism for the TVP

downplays the signal when the observation is perceived to be in the tail of the distribution.

A given prediction error is more likely to be categorized as part of the tails in periods of

low volatility than in periods of high volatility. Furthermore, the algorithm is extended to

incorporate restrictions which are popular in the empirical literature. Specifically, the model is

allowed to have a bounded long-run mean and the coefficients are restricted so that the model

is locally stationary. The model introduced in this paper does not require the use of simulation

techniques. As such, it entails a clear computational advantage, especially when restrictions

on the parameters are imposed.

We apply the algorithm to the study of inflation dynamics. Several alternative specifications

are shown to track the data very well, so that they give a parsimonious characterization of

inflation dynamics. The specifications with Student-t innovations are more robust to short

lived variations in inflation, especially in the last decade. Furthermore, the use of heavy-tails

highlights the presence of high-frequency variations in volatility on top of well documented

low-frequency variations.

The proposed model produces forecasts that are comparable in terms of point forecasts and

far superior in terms of density forecasts than the model of Stock and Watson (2007) and a

TVP-VAR with stochastic volatility. Allowing for heavy tails is found to be a key ingredient

to obtain well calibrated density forecasts; only in this case one has a correct characterization

of the density at the tail of the distribution. Imposing restrictions to the TVP of the model is

relevant in order to produce better forecasts. For long-run horizons, imposing local stationarity

improves substantially the performance in terms of density forecasts. Moreover, imposing the

bounds on the long-run mean of the model improves the density forecasts for 1 and 2 years

ahead.

The results of this paper can be extended along various directions. Whereas the empirical

analysis is centered around the study of inflation dynamics we suspects that similar gains in

forecasting performance extend to other macroeconomic time series. Furthermore, the model

can be extended (along the lines of Koop and Korobilis, 2013) to the multivariate case, where

the dimensions of the model might be so large that the use of computationally intensive simu-

lation methods is infeasible, and imposing restrictions is typically problematic.
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Figure 1: The left panel plots of the weights, wt, against the standardized errors, ζt = εt/σt, for
different values of the degrees of freedom υ. The right panel plots the weighted standardized
errors, wtζt, against the standardized errors, ζt. The latter is also known as the influence
function.

26



1960 1970 1980 1990

−5

0

5

10

15

Trend

2000 2005 2010

1960 1970 1980 1990

−5

0

5

10

15

AR(1)

2000 2005 2010

Figure 2: Implied “long-run” inflation, µt = φ0,t/(1 −
∑p

j=1 φj,t), together with the realized
inflation. Trend-only specification (upper panel) and AR(1) specification (lower panel) for the
model with Gaussian (continuous line) and Student-t innovations (dashed line).
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Figure 3: Implied volatility, log σt, for the AR(1) specification of the model with Gaussian
(continuous line) and Student-t innovations (dashed line).
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Figure 4: Probability density function of the PITs (normalized) for various AR(1) specifications of the model for one quarter (upper panels),
one year (middle panel) and two years (lower panel) ahead forecasts. The dashed lines denote the 95% confidence interval constructed using a
Normal approximation to a binomial distribution, as in Diebold et al. (1998).
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Figure 5: Left panel: fluctuation test statistics (Giacomini and Rossi, 2010) and the 5% critical
value of the two sided test. The test compares the average log-score of two models over a
window of 4 years, the dates on the x-axis correspond to the mid-point of the window. Positive
values of the fluctuation statistic imply that the Student-t model outperforms the alternative.
Right panel: cumulative sum of the logarithm score over time. A rising line suggests that
the Student-t model outperforms the alternative. Student-t vs. SW model (dashed line) and
Student-t vs. Normal model (continuous line). The Gaussian and Student-t model are for the
trend-only specification. In all cases the statistics are computed for the one quarter ahead
forecast horizon.
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Normal Student-t

κφ κσ LL AIC BIC κφ κσ v LL AIC BIC

Trend 0.531 0.147 -549.114 1102.228 1109.349 0.471 0.212 5.331 -523.183 1052.365 1063.046
(0.021) (0.022) (0.070) (0.085) (1.211)

AR(1) 0.148 0.183 -541.147 1086.294 1093.415 0.170 0.170 5.137 -519.597 1045.195 1055.877
(0.023) (0.023) (0.001) (0.001) (0.002)

AR(2) 0.117 0.166 -551.3741 1106.748 1113.869 0.098 0.217 5.738 -526.518 1059.036 1069.718
(0.022) (0.023) (0.001) (0.001) (0.001)

AR(4) 0.136 0.214 -544.280 1092.556 1099.681 0.1381 0.260 6.207 -520.511 1047.023 1057.705
(0.022) (0.023) (0.001) (0.001) (0.001)

Trend-B 0.205 0.487 -604.327 1212.654 1219.775 0.820 0.246 5.875 -561.747 1129.495 1140.177
(0.022) (0.021) (0.165) (0.114) (1.406)

AR(1)-B 0.0861 0.283 -535.919 1075.838 1082.959 0.073 0.262 4.208 -520.567 1047.134 1057.816
(0.020) (0.023) (0.000) (0.000) (0.001)

AR(2)-B 0.098 0.267 -535.412 1074.825 1081.946 0.068 0.253 4.743 -520.794 1047.588 1058.270
(0.021) (0.023) (0.000) (0.000) (0.000)

AR(4)-B 0.096 0.273 -545.230 1094.460 1101.582 0.087 0.295 5.639 -521.315 1048.630 1059.312
(0.021) (0.023) (0.000) (0.000) (0.001)

Table 1: Estimation of the score-driven model πt = φ0,t +
∑p

j=1 φj,tπt−j + εt, where πt is an-
nualized quarterly US CPI inflation 1955Q1-2012Q4. ‘Trend’ denotes the specification with
p = 0, ‘B’ denotes the specifications with restricted long-run mean, AR(p) denotes the spec-
ification with lags order equal to p. Normal corresponds to εt ∼ N(0, σ2

t ), while Student-t to
εt ∼ tυ(0, σ

2
t ). The estimated static parameters are κφ, κσ and υ (std. error in brackets). LL

is the Log-likelihood, AIC and BIC are the information criteria.
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RMSFE MAE

h=1 h=4 h=8 h=1 h=4 h=8

SW 2.403 2.989 3.192 1.617 2.076 2.299
Normal
Trend 0.908 0.938 1.038 0.898 0.978 1.042

(0.029) (0.246) (0.501) (0.037) (0.677) (0.354)
Trend-B 1.306 1.074 0.943 1.436 1.160 1.019

(0.000) (0.445) (0.651) (0.000) (0.139) (0.884)
AR(1) 0.877 0.886 0.899 0.896 0.929 0.903

(0.004) (0.062) (0.262) (0.036) (0.287) (0.284)
AR(1)-B 0.947 0.902 0.917 0.981 0.928 0.923

(0.305) (0.177) (0.478) (0.757) (0.346) (0.488)
AR(2) 0.889 0.870 0.951 0.895 0.925 0.950

(0.007) (0.032) (0.534) (0.024) (0.240) (0.537)
AR(2)-B 0.932 0.879 0.910 0.952 0.914 0.895

(0.109) (0.060) (0.375) (0.359) (0.195) (0.258)
AR(4) 0.862 0.850 0.923 0.871 0.909 0.919

(0.004) (0.016) (0.255) (0.016) (0.132) (0.202)
AR(4)-B 1.043 0.902 0.926 0.973 0.906 0.896

(0.741) (0.140) (0.537) (0.700) (0.141) (0.315)
Student-t
Trend 0.926 0.927 1.028 0.886 0.958 1.015

(0.143) (0.213) (0.708) (0.028) (0.443) (0.811)
Trend-B 1.273 1.042 0.914 1.323 1.070 0.963

(0.001) (0.662) (0.491) (0.000) (0.481) (0.758)
AR(1) 0.878 0.901 0.918 0.888 0.949 0.911

(0.003) (0.064) (0.324) (0.026) (0.393) (0.291)
AR(1)-B 0.869 0.882 0.898 0.891 0.882 0.855

(0.004) (0.100) (0.404) (0.040) (0.114) (0.198)
AR(2) 0.918 0.897 0.990 0.915 0.949 0.976

(0.042) (0.068) (0.901) (0.060) (0.413) (0.768)
AR(2)-B 0.922 0.898 0.948 0.960 0.914 0.908

(0.056) (0.114) (0.608) (0.391) (0.188) (0.340)
AR(4) 0.869 0.852 0.919 0.873 0.904 0.906

(0.005) (0.012) (0.262) (0.017) (0.115) (0.215)
AR(4)-B 0.929 0.902 0.965 0.945 0.923 0.936

(0.215) (0.121) (0.746) (0.318) (0.204) (0.499)

Table 2: Point forecasts for US CPI inflation 1973Q1–2012Q4. The Root Mean Squared Error
(RMSE) and the Mean Absolute Error (MAE) are expressed in relative terms with respect
to the SW model. The forecast horizon is ‘h’. In brackets are the p-values of Giacomini and
White’s (2006) test. Values in bold denote a significance at the 10% level.
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h=1 h=4 h=8

BK RS ALS CRPS KN ALS CRPS KN ALS CRPS

SW 0.000 9.801 -2.684 - 1.681 - 0.070 -2.855 - 1.910 - 0.169 -3.006 - 2.165 -
Normal
Trend 0.145 4.422 -2.559 0.128 1.147 0.000 0.000 -2.914 0.724 1.534 0.000 0.000 -3.098 0.649 1.756 0.001
AR(1) 0.004 3.782 -2.486 0.003 1.123 0.000 0.004 -2.837 0.827 1.427 0.000 0.094 -2.900 0.299 1.482 0.000
AR(2) 0.006 4.692 -2.536 0.034 1.135 0.000 0.001 -2.801 0.529 1.412 0.000 0.014 -2.897 0.322 1.556 0.000
AR(4) 0.146 3.481 -2.466 0.004 1.096 0.000 0.003 -2.792 0.394 1.392 0.000 0.011 -2.848 0.066 1.513 0.000
Trend-B 0.058 7.832 -3.107 0.000 1.667 0.850 0.000 -3.672 0.008 1.784 0.200 0.000 -3.725 0.009 1.731 0.000
AR(1)-B 0.005 3.192 -2.454 0.000 1.168 0.000 0.000 -3.040 0.000 1.471 0.000 0.000 -3.172 0.002 1.560 0.000
AR(2)-B 0.457 3.721 -2.627 0.681 1.181 0.000 0.000 -3.051 0.030 1.451 0.000 0.000 -3.230 0.011 1.560 0.000
AR(4)-B 0.978 4.096 -2.602 0.402 1.198 0.000 0.000 -2.985 0.121 1.494 0.000 0.000 -3.195 0.021 1.605 0.000
Student-t
Trend 0.700 0.702 -1.590 0.000 1.160 0.000 0.000 -2.000 0.000 1.535 0.000 0.000 -2.327 0.000 1.752 0.001
AR(1) 0.998 0.132 -1.633 0.000 1.139 0.000 0.179 -1.763 0.000 1.438 0.000 0.044 -1.809 0.000 1.489 0.000
AR(2) 0.501 0.552 -1.625 0.000 1.151 0.000 0.011 -1.704 0.000 1.423 0.000 0.000 -1.782 0.000 1.558 0.000
AR(4) 0.791 0.256 -1.598 0.000 1.108 0.000 0.073 -1.670 0.000 1.402 0.000 0.012 -1.699 0.000 1.515 0.000
Trend-B 0.005 0.272 -1.569 0.000 1.674 0.926 0.000 -1.830 0.000 1.791 0.217 0.000 -1.981 0.000 1.737 0.000
AR(1)-B 0.995 0.042 -1.677 0.000 1.180 0.000 0.571 -1.746 0.000 1.497 0.000 0.372 -1.782 0.000 1.588 0.000
AR(2)-B 0.759 0.361 -1.667 0.000 1.196 0.000 0.597 -1.649 0.000 1.474 0.000 0.532 -1.653 0.000 1.585 0.000
AR(4)-B 0.755 1.332 -1.627 0.000 1.212 0.000 0.297 -1.610 0.000 1.515 0.000 0.080 -1.590 0.000 1.631 0.000

Table 3: Density Forecasts for the US-CPI inflation 1973Q1-2012Q4. ‘h’ denotes the forecast
horizon. ‘BK’ denotes the p-value of the test proposed by Berkowitz (2001), ‘RS’ is the test
proposed by Rossi and Sekhposyan (2014), with critical values 2.25 (1%), 1.51 (5%), 1.1 (10%).
‘ALS’ denotes the Average Log Score and ‘CRPS’ denotes the Continuous Ranked Probability
Score. For both statistics we report the associated p-values of Amisano and Giacomini’s (2007)
test with respect to the SW model. ‘KN’ denotes the p-value of Knüppel’s (2015) test.
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h=1 h=4 h=8

BK RS ALS Diff CRPS Ratio KN ALS Diff CRPS Ratio KN ALS Diff CRPS Ratio

Normal
AR(1) 0.039 3.721 -0.001 0.939 0.994 0.706 0.005 -0.345 0.000 1.272 0.000 0.083 -0.431 0.000 1.396 0.000
AR(2) 0.049 5.041 -0.040 0.031 1.002 0.862 0.009 -0.320 0.000 1.323 0.000 0.057 -0.457 0.000 1.584 0.000
AR(4) 0.142 4.032 -0.056 0.059 1.004 0.836 0.067 -0.343 0.000 1.349 0.000 0.085 -0.410 0.000 1.661 0.000
Student-t
AR(1) 0.619 0.462 0.095 0.000 0.990 0.537 0.095 0.016 0.791 1.264 0.000 0.007 -0.049 0.528 1.384 0.000
AR(2) 0.252 0.812 0.039 0.088 0.999 0.955 0.000 -0.088 0.197 1.313 0.000 0.000 -0.224 0.035 1.563 0.000
AR(4) 0.286 0.256 -0.009 0.806 1.005 0.802 0.000 -0.215 0.009 1.341 0.000 0.000 -0.413 0.001 1.643 0.000

Table 4: Density Forecasts for the US-CPI inflation 1973Q1-2012Q4 - Stationary Restrictions.
‘h’ denotes the forecast horizon. ‘BK’ denotes the p-value of the test proposed by Berkowitz
(2001). ‘RS’ is the test proposed by Rossi and Sekhposyan (2014), with critical values 2.25
(1%), 1.51 (5%), 1.1 (10%). ‘ALS Diff’ and ‘CRPS Ratio’ denote the difference in the ALS and
the ratio of CRPS with respect their counterpart with stationary restrictions. Both statistics
have the associated p-values of Amisano and Giacomini’s (2007) test. ‘KN’ denotes the p-value
of Knüppel’s (2015) test.
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RMSFE MAE

h=1 h=4 h=8 h=16 h=1 h=4 h=8 h=16

TVP-VAR 2.131 2.786 3.143 3.196 1.477 1.927 2.004 2.167
Normal
AR(1) 0.989 0.950 0.913 0.976 0.981 1.001 1.036 1.056

(0.857) (0.658) (0.453) (0.743) (0.759) (0.991) (0.696) (0.504)
AR(1)-B 1.068 0.968 0.931 1.025 1.074 1.000 1.059 1.097

(0.335) (0.796) (0.632) (0.847) (0.290) (0.998) (0.579) (0.535)
Student-t
AR(1) 0.990 0.966 0.932 1.010 0.973 1.023 1.045 1.090

(0.886) (0.755) (0.528) (0.901) (0.661) (0.789) (0.630) (0.337)
AR(1)-B 0.980 0.946 0.912 0.985 0.975 0.950 0.981 0.980

(0.757) (0.670) (0.545) (0.908) (0.701) (0.612) (0.852) (0.889)

Table 5: Point forecasts for US CPI inflation 1973Q1–2012Q4: Comparison with a TVP-VAR
with stochastic volatility. The Root Mean Squared Error (RMSE) and the Mean Absolute
Error (MAE) are expressed in relative terms with respect to the TVP-VAR with stochastic
volatility. The forecast horizon is ‘h’. In brackets are the p-values of Giacomini and White’s
(2006) test. Values in bold denote a significance at the 10% level.
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h=1 h=4

Berk RS ALS CRPS KN ALS CRPS

TVP-VAR 0.290 0.781 -2.068 – 1.095 – 0.234 -2.290 – 1.411 –
Normal
AR(1) 0.004 3.782 -2.486 0.000 1.123 0.623 0.004 -2.837 0.000 1.427 0.704
AR(1)-B 0.005 3.192 -2.454 0.000 1.168 0.242 0.000 -3.040 0.000 1.471 0.363
Student-t
AR(1) 0.998 0.132 -1.633 0.000 1.139 0.450 0.179 -1.763 0.000 1.438 0.600
AR(1)-B 0.995 0.042 -1.677 0.000 1.180 0.166 0.571 -1.746 0.000 1.497 0.205

h=8 h=16

KN ALS CRPS KN ALS CRPS

TVP-VAR 0.025 -2.375 – 1.544 – 0.001 -2.384 – 1.644 –
Normal
AR(1) 0.094 -2.900 0.000 1.482 0.763 0.075 -2.807 0.000 1.640 0.929
AR(1)-B 0.000 -3.172 0.000 1.560 0.474 0.000 -3.199 0.000 1.795 0.054
Student-t
AR(1) 0.044 -1.809 0.000 1.489 0.823 0.001 -1.872 0.000 1.632 0.814
AR(1)-B 0.372 -1.782 0.000 1.588 0.273 0.370 -1.770 0.000 1.814 0.021

Table 6: Density Forecasts for the US-CPI inflation 1973Q1-2012Q4: Comparison with a TVP-
VAR with stochastic volatility. ‘h’ denotes the forecast horizon. ‘BK’ denotes the p-value of the
test proposed by Berkowitz (2001), ‘RS’ is the test proposed by Rossi and Sekhposyan (2014),
with critical values 2.25 (1%), 1.51 (5%), 1.1 (10%). ‘ALS’ denotes the Average Log Score
and ‘CRPS’ denotes the Continuous Ranked Probability Score. For both statistics we report
the associated p-values of Amisano and Giacomini’s (2007) test with respect to the TVP-VAR
with stochastic volatility model. ‘KN’ denotes the p-value of Knüppel’s (2015) test.
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h=1 h=4 h=8

BK RS ALS CRPS KN ALS CRPS KN ALS CRPS

P
C

E
D

efl
at

or

SW 0.000 11.705 -2.453 - 1.326 - 0.196 -2.604 - 1.474 - 0.313 -2.743 - 1.648 -
Normal
Trend 0.023 2.844 -2.249 0.105 0.805 0.000 0.000 -2.783 0.444 1.102 0.000 0.000 -3.011 0.209 1.256 0.000
AR(1) 0.278 2.596 -2.165 0.001 0.830 0.000 0.000 -2.607 0.914 1.198 0.000 0.000 -2.727 0.961 1.264 0.000
AR(2) 0.234 2.776 -2.199 0.018 0.819 0.000 0.000 -2.550 0.500 1.154 0.000 0.002 -2.690 0.600 1.224 0.000
AR(4) 0.134 3.659 -2.237 0.076 0.866 0.000 0.000 -2.760 0.008 1.332 0.054 0.000 -2.892 0.020 1.443 0.028
Trend-B 0.067 3.198 -2.607 0.192 1.099 0.000 0.000 -3.114 0.104 1.228 0.001 0.000 -3.365 0.048 1.200 0.000
AR(1)-B 0.253 2.776 -2.126 0.000 0.818 0.000 0.000 -2.646 0.406 1.173 0.000 0.000 -2.801 0.216 1.263 0.000
AR(2)-B 0.605 3.322 -2.113 0.002 0.798 0.000 0.000 -2.533 0.428 1.095 0.000 0.000 -2.639 0.097 1.177 0.000
AR(4)-B 0.001 2.116 -2.286 0.237 0.822 0.000 0.001 -2.554 0.550 1.092 0.000 0.000 -2.852 0.177 1.227 0.000
Student-t
Trend 0.430 0.375 -1.976 0.262 0.813 0.000 0.000 -1.943 0.000 1.101 0.000 0.000 -2.217 0.000 1.251 0.000
AR(1) 0.783 0.060 -1.627 0.000 0.842 0.000 0.364 -1.657 0.000 1.213 0.000 0.029 -1.739 0.000 1.275 0.000
AR(2) 0.981 0.219 -1.640 0.000 0.832 0.000 0.293 -1.695 0.000 1.167 0.000 0.020 -1.773 0.000 1.234 0.000
AR(4) 0.977 0.164 -1.697 0.000 0.883 0.000 0.131 -1.783 0.000 1.349 0.072 0.002 -1.887 0.000 1.453 0.027
Trend-B 0.033 0.477 -1.539 0.000 1.101 0.000 0.000 -1.773 0.000 1.229 0.001 0.000 -1.901 0.000 1.201 0.000
AR(1)-B 0.270 0.366 -1.630 0.000 0.830 0.000 0.175 -1.575 0.000 1.189 0.000 0.015 -1.635 0.000 1.278 0.000
AR(2)-B 0.819 0.692 -1.885 0.000 0.831 0.000 0.011 -1.886 0.000 1.136 0.000 0.000 -1.896 0.000 1.214 0.000
AR(4)-B 0.444 0.180 -1.618 0.000 0.830 0.000 0.449 -1.588 0.000 1.102 0.000 0.077 -1.571 0.000 1.240 0.000

G
D

P
D

efl
at

or

SW 0.000 13.368 -2.316 - 1.135 - 0.344 -2.423 - 1.231 - 0.381 -2.535 - 1.356 -
Normal
Trend 0.000 0.426 -2.252 0.859 0.564 0.000 0.000 -2.763 0.339 0.796 0.000 0.000 -5.570 0.092 0.964 0.000
AR(1) 0.000 3.749 -1.854 0.002 0.621 0.000 0.000 -2.203 0.010 1.031 0.004 0.000 -2.458 0.699 1.110 0.001
AR(2) 0.000 2.815 -1.879 0.014 0.604 0.000 0.000 -2.204 0.041 0.965 0.000 0.000 -2.545 0.856 1.069 0.000
AR(4) 0.000 1.016 -3.116 0.335 0.563 0.000 0.000 -2.656 0.395 0.774 0.000 0.000 -3.779 0.096 0.923 0.000
Trend-B 0.000 0.666 -3.201 0.249 0.905 0.000 0.000 -2.766 0.108 0.999 0.000 0.000 -5.297 0.094 1.007 0.000
AR(1)-B 0.000 5.113 -1.740 0.000 0.604 0.000 0.000 -2.222 0.001 1.030 0.003 0.000 -2.496 0.855 1.234 0.118
AR(2)-B 0.000 0.745 -1.810 0.005 0.561 0.000 0.000 -1.883 0.000 0.769 0.000 0.000 -2.263 0.009 0.899 0.000
AR(4)-B 0.000 5.474 -1.733 0.000 0.635 0.000 0.000 -2.221 0.001 1.013 0.001 0.000 -2.559 0.513 1.298 0.465
Student-t
Trend 0.726 0.168 -1.567 0.000 0.566 0.000 0.000 -1.930 0.000 0.785 0.000 0.000 -2.304 0.077 0.946 0.000
AR(1) 0.190 2.894 -1.447 0.000 0.622 0.000 0.000 -1.637 0.000 1.028 0.003 0.000 -1.793 0.000 1.107 0.001
AR(2) 0.193 1.959 -1.477 0.000 0.604 0.000 0.000 -1.674 0.000 0.961 0.000 0.000 -1.842 0.000 1.063 0.000
AR(4) 0.463 0.726 -1.684 0.000 0.574 0.000 0.265 -1.880 0.000 0.783 0.000 0.134 -1.968 0.000 0.924 0.000
Trend-B 0.120 0.245 -1.565 0.000 0.906 0.000 0.078 -1.715 0.000 0.996 0.000 0.000 -1.886 0.000 1.004 0.000
AR(1)-B 0.612 0.700 -1.470 0.000 0.605 0.000 0.293 -1.513 0.000 1.028 0.002 0.016 -1.650 0.000 1.229 0.103
AR(2)-B 0.234 1.206 -1.485 0.000 0.564 0.000 0.009 -1.483 0.000 0.774 0.000 0.000 -1.493 0.000 0.903 0.000
AR(4)-B 0.008 0.647 -1.512 0.000 0.644 0.000 0.001 -1.498 0.000 1.014 0.000 0.000 -1.471 0.000 1.279 0.307

Table 7: Density Forecasts for the US PCE Deflator and US GDP Deflator 1973Q1-2012Q4.
’h’ denotes the forecast horizon. ’BK’ denotes the p-value of the test proposed by Berkowitz
(2001), ’RS’ is the test proposed by Rossi and Sekhposyan (2014) with critical values 2.25
(1%), 1.51 (5%), 1.1 (10%). ’ALS’ denotes the Average Log Score and ’CRPS’ denotes the
Continuous Ranked Probability Score. For both statistics we report the associated p-values of
Amisano and Giacomini’s (2007) test with respect to the SW model. ‘KN’ denotes the p-value
of Knüppel’s (2015) test.
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h=1 h=4 h=8

BK RS ALS CRPS KN ALS CRPS KN ALS CRPS

Normal
CA 0.000 5.726 -2.457 - 1.053 - 0.000 -2.519 - 1.269 - 0.087 -3.284 - 1.496 -
FR 0.000 1.646 -2.398 - 0.761 - 0.000 -2.953 - 1.018 - 0.000 -3.156 - 1.214 -
DE 0.061 1.742 -1.910 - 0.762 - 0.051 -2.189 - 0.982 - 0.000 -2.391 - 1.230 -
JP 0.000 2.312 -2.587 - 0.894 - 0.000 -3.221 - 1.292 - 0.000 -4.492 - 1.559 -
IT 0.005 5.127 -2.599 - 1.011 - 0.671 -2.676 - 1.208 - 0.349 -2.658 - 1.369 -
UK 0.034 7.595 -2.737 - 1.285 - 0.293 -3.005 - 1.579 - 0.000 -3.402 - 1.847 -
Student-t
CA 0.527 0.357 -1.446 0.000 1.052 0.270 0.001 -1.663 0.000 1.242 0.125 0.000 -1.943 0.042 1.425 0.115
FR 0.483 0.843 -1.430 0.011 0.762 0.184 0.000 -1.788 0.021 0.997 0.357 0.000 -1.902 0.003 1.157 0.837
DE 0.062 0.441 -1.457 0.000 0.770 0.020 0.856 -1.664 0.000 0.958 0.211 0.005 -1.916 0.000 1.154 0.000
JP 0.161 1.252 -1.518 0.000 0.901 0.002 0.000 -2.011 0.000 1.262 0.157 0.000 -2.303 0.003 1.471 0.000
IT 0.431 1.001 -1.521 0.000 1.029 0.000 0.466 -1.687 0.000 1.191 0.102 0.014 -1.835 0.000 1.302 0.539
UK 0.886 0.384 -1.632 0.000 1.311 0.000 0.018 -1.872 0.000 1.558 0.053 0.000 -2.057 0.000 1.758 0.707

Table 8: Density Forecast for the G7 countries CPI inflation 1973Q1-2012Q4 - Trend speci-
fication. ‘h’ denotes the forecast horizon. ‘BK’ denotes the p-value of the test proposed by
Berkowitz (2001), ‘RS’ is the test proposed by Rossi and Sekhposyan (2014) with critical values
2.25 (1%), 1.51 (5%), 1.1 (10%), ‘ALS’ denotes the Average Log Score, ‘CRPS’ denotes the
Continuous Ranked Probability Score, for both statistics we report the associated p-values of
Amisano and Giacomini’s (2007) test with respect to the Normal distribution. ‘KN’ denotes
the p-value of Knüppel’s (2015) test.
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A Derivations and proofs

A.1 The score vector in Section 2.1

Following Fiorentini et al. (2003), we re-write the predictive log-likelihood (4) as follows

`t = c(η) + dt + gt,

with

dt = −1

2
log σ2

t , gt = −
(
η + 1

2η

)
log

[
1 +

η

1− 2η
ζ2
t

]
,

where ζt = εt/σt and Γ(·) is the Euler’s gamma function. Let∇t = ∂`t/∂ft denotes the gradient
function, partitioning in two blocks, ∇φ and ∇σ, the first one depend upon gt and ζt, while the

second upon dt, gt and ζt. We have to compute ∂gt
∂φ′t

= ∂gt
∂ζ2t

∂ζ2t
∂φ′t

, where

∂gt
∂ζ2

t

= − η + 1

2(1− 2η + ηζ2
t )

and
∂ζ2t
∂φ′t

= −2x′tεt
σ2
t

. The score for the coefficients of the model is then equal to

∇φ =
∂gt
∂ζ2

t

∂ζ2
t

∂φt
= xt

(η + 1) εt/σ
2
t

(1− 2η + ηε2
t/σ

2
t )
.

The gradient for the variance component is

∇σ =
∂dt
∂σ2

t

+
∂gt
∂σ2

t

=
∂dt
∂σ2

t

+
∂gt
∂ζ2

t

∂ζ2
t

∂σ2
t

,

where
∂ζ2t
∂σ2

t
= − ε2t

σ4
t
, and thus we obtain

∇σ =
1

2σ4
t

[
(η + 1)

(1− 2η + ηζ2
t )
ε2
t − σ2

t

]
.

We compute the information matrix as It = −E(Ht), where Ht the Hessian matrix and it can
be partitioned in four blocks:

Ht =

[
Hφφ,t Hφσ,t

Hσφ,t Hσσ,t

]
.

The first block Hφφ,t can be calculated as

Hφφ,t =
∂∇φ,t

∂φ′t
=

(1 + η) [ηζ2
t + 2η − 1]

(1− 2η + ηζ2
t )2

xtx
′
t

σ2
t

.

Recalling that εt/σt = ζt ∼ tυ(0, 1) implies that ζt =
√

(υ−2)ςt
ξt

ut, where ut is uniformly dis-

tributed on the unit set, ςt is a chi-squared random variable with 1 degree of freedom, ξt is
a gamma variate with mean υ > 2 variance 2υ, and ut, ςt and ξt are mutually independent.
Therefore, it is possible to show that

Iφφ,t = −E(Hφφ,t) =
(1 + η)

(1− 2η)(1 + 3η)

xtx
′
t

σ2
t

.
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The Hessian with respect to the volatility is

Hσσ,t =
∂∇σ

∂σ2
t

=
1

2σ4
t

− [2(1− 2η) + ηε2
t/σ

2
t ](η + 1)ε2

t/σ
6
t

2[1− 2η + ηε2
t/σ

2
t ]

2
,

and

Iσσ,t = −E(Hσσ,t) =
1

2 (1 + 3η)σ4
t

.

The cross-derivative Hφσ,t = −xt εtσ4
t

and therefore Iφσ,t = 0. Finally, the information matrix is

equal to

It =

[
(1+η)

(1−2η)(1+3η)
1
σ2
t
xtx
′
t 0

0′ 1
2(1+3η)σ4

t

]
,

and the scaled score vector is

st = I−1
t ∇t =

 (1−2η)(1+3η)

(1−2η+ηζ2t )
S−1
t

1
σ2
t
xtεt

(1 + 3η)
[

(1+η)

(1−2η+ηζ2t )
ε2
t − σ2

t

]  .
where St = 1

σ2
t
xtx
′
t.

A.2 Example in Section 2.2

Considering (1) with time varying mean:

yt = µt + εt, εt ∼ tυ(0, σ
2
t ).

Let assume that wt are exogenously given, the estimated level is

µt+1 = (1− κθwt)µt + κθwtyt

=
κθ

1− κθwtL
wtyt

= κθ

∞∑
j=0

γjwt−jyt−j,

with κθ = κφ
(1−2η)(1+3η)

(1+η)
. After a bit of algebra, we obtain explicit expression for the weights

across time:

γ0 = 1, γj =
t∏

k=t−j+1

(1− κθwk).

The same weighting pattern is obtained when regressors are included. Since the weights across
time, γt, are affected by the cross-sectional weights, wt, we cannot obtained the robust filter for
µt+1 as solution of a re-weighted quadratic criterion function as Ljung and Soderestrom (1985,
sec. 2.6.2). In general, when we depart from Gaussianity the stochastic Newton-Gradient
algorithm cannot be obtained as a recursive solution of a quadratic criterion function. For the
variance it is straightforward to obtain the expression for the variance its implied weighting
pattern.
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A.3 Proof of Theorem 1 in Section 3.1

For simplicity we drop the temporal subscript t such that the p× p Jacobian matrix is

Γ =
∂Φ(ρ)

∂ρ′
.

The first (p − 1) coefficients are obtained from last recursion in (16), and the last coeffi-
cients is equal to the last partial autocorrelation ρp. We denote the final vector of coeffi-
cients as φp = (φ1,p, ..., φp−1,p, φp,p)′ = (a′p, ρp), where ap = (φ1,p, ..., φp−1,p) and φp,p = ρp.
Therefore, we can express the last iteration of (16) in matrix form ap = Jp−1φp−1, where
φp−1 = (φ1,p−1, ..., φp−2,p−1, φp−1,p−1)′ = (a′p−1, ρp−1)′ and

Jp−1 =


1 0 · · · 0 −ρp
0

. . . 0
... .

...

0
. . . 0

−ρp 0 · · · 0 1

 .

Note that if p is even the central element of Jp−1 is 1−ρp. Moreover, the vector φ̃p = (φ′p−1, ρp)
′

contains all the partial autocorrelations, i.e. φ̃p = (a′p−1, ρp−1, ρp) and keep substituting we

obtain φ̃p = ρp = (ρ1, ..., ρp−1, ρp). The Jacobian matrix can be expressed as follows

Γ = Γp =

[ ∂ap
∂φ′p−1

∂ap
∂ρp

∂ρp
∂φ′p−1

∂ρp
∂ρp

]
.

The upper-left block is a (p−1)×(p−1) matrix and it can be computed using the definition ap =
Jp−1φp−1; since Jp−1 contains the last partial correlation ρp we have the recursive formulation

∂ap
∂φ′p−1

= Jp−1Γp−1

where Γp−1 = ∂φp−1/∂ρp−1 is the Jacobian of the first p−1 coefficients with respect to the first
p− 1 partial autocorrelations. Finally, we have that the other three blocks are

∂ρp
∂a′p−1

= 0′
∂ρp
∂ρp

= 1,
∂ap
∂ρp

=
∂Jp−1

∂ρp
φp−1 =


−φp−1,p−1

−φp−2,p−1

...
−φ1,p−1

 .
Note that φp−1 is a given and ∂Jp−1

∂ρp
= antidiag(−1, ...,−1) inverts the order of elements in

φp−1 = (φ1,p−1, ..., φp−2,p−1, φp−1,p−1)′ with opposite sign.
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B Data

The price data for the US are obtained from Federal Reserve economic database (FRED).
US CPI: Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL). US GDP
Deflator: Gross Domestic Product: Implicit Price Deflator (GDPDEF). US PCE Deflator:
Personal Consumption Expenditures: Chain-type Price Index (PCECTPI). Civilian Unemploy-
ment Rate (UNRATE). These data are seasonally adjusted at the origin. 3-Month Treasury
Bill: Secondary Market Rate (TB3MS).

The G7 CPI data instead are from the OECD Consumer Prices (MEI) dataset. The data
have been seasonally adjusted using X11 prior to the analysis

C Robustness: the importance of the score-driven up-

dating mechanism

Section 2 shows that, in presence of heavy tails, the adaptive algorithm developed in this
paper delivers a model-consistent penalization of the outliers. In fact, the estimated time
variation in the parameters is such that the observations are downweighted when they are too
large. Someone could argue that a score-driven law of motion may be not a crucial ingredient
and that standard TVP model would deliver comparable results by simply assuming the heavy
tails distribution. Here, we want to assess the importance of using the law of motion of the
parameters consistent with the score-driven model in presence of heavy-tails. We compare
the density forecast of the two alternative “misspecified” cases. Firstly, we consider the case
where the dynamic of the parameters is driven by the law of motion under Normal distribution
(11)-(12) but the appropriate density is the Student-t. This is in spirit of the t-GARCH model
of Bollerslev (1987) and it is labeled “Miss1”. Secondly, we use the estimated the model under
Gaussian distribution and we produce the density using a Student-t with calibrated degrees
of freedom. Following Corradi and Swanson (2006) we choose υ = 5. This second case is
labeled “Miss2”. Table C.1 reports differences in the ALS and in the CPRS ratio with respect
to the benchmark score-driven model with Student-t. Miss1 delivers ALS that are comparable
with the benchmark model. However, it is strongly outperformmed by the benchmark in terms
of the CRPS. Conversely, Miss2 performs rather poorly compared to the benchmark model
when one looks at the ALS, even if it produces similar CRPS. Those results suggest that the
low degree of freedom and the score-driven law of motion are both important to achieve well
calibrated density forecasts.
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h=1 h=4 h=8

BK RS ALS Diff CRPS Ratio KN ALS Diff CRPS Ratio KN ALS Diff CRPS Ratio

Miss-1
Trend 0.923 1.521 -0.065 0.053 1.466 0.001 0.000 -0.051 0.189 1.304 0.004 0.000 0.010 0.868 1.226 0.013
AR(1) 0.935 0.992 0.061 0.018 1.321 0.000 0.083 0.070 0.044 1.240 0.001 0.002 0.025 0.549 1.243 0.001
AR(2) 0.803 0.992 0.100 0.000 1.313 0.000 0.077 0.092 0.000 1.246 0.000 0.002 0.092 0.001 1.184 0.002
AR(4) 0.898 0.841 0.071 0.001 1.276 0.010 0.149 0.059 0.017 1.224 0.013 0.013 0.044 0.140 1.206 0.017
Trend-B 0.000 2.116 0.093 0.024 1.289 0.040 0.000 0.135 0.055 1.268 0.061 0.000 0.000 0.997 1.283 0.036
AR(1)-B 0.582 0.992 0.141 0.000 1.470 0.051 0.641 0.256 0.000 1.424 0.084 0.401 0.256 0.000 1.398 0.093
AR(2)-B 0.604 0.702 0.077 0.038 1.223 0.031 0.570 0.121 0.004 1.198 0.046 0.208 0.061 0.203 1.192 0.052
AR(4)-B 0.884 2.401 0.082 0.005 2.922 0.001 0.337 0.054 0.023 2.939 0.002 0.225 0.058 0.044 2.780 0.005
Miss-2
Trend 0.481 0.992 -0.144 0.000 1.005 0.027 0.000 -0.194 0.000 0.994 0.014 0.000 -0.141 0.035 0.991 0.000
AR(1) 0.653 0.272 -0.093 0.000 1.000 0.575 0.030 -0.080 0.000 1.000 0.641 0.003 -0.099 0.000 1.000 0.668
AR(2) 0.601 0.256 -0.092 0.000 1.002 0.269 0.007 -0.146 0.000 0.999 0.501 0.000 -0.157 0.000 0.999 0.562
AR(4) 0.516 0.462 -0.138 0.000 1.004 0.002 0.020 -0.177 0.000 1.002 0.164 0.001 -0.210 0.000 1.001 0.368
Trend-B 0.000 2.862 -0.279 0.000 1.004 0.066 0.000 -0.229 0.000 1.001 0.651 0.000 -0.186 0.000 1.002 0.336
AR(1)-B 0.173 0.702 -0.113 0.001 0.998 0.110 0.479 0.031 0.420 0.996 0.003 0.310 0.070 0.077 0.996 0.000
AR(2)-B 0.191 0.576 -0.108 0.001 1.000 0.843 0.232 -0.063 0.096 0.999 0.199 0.075 -0.086 0.010 1.000 0.793
AR(4)-B 0.218 1.521 -0.143 0.000 1.002 0.078 0.079 -0.138 0.000 1.002 0.170 0.054 -0.140 0.000 1.002 0.046

Table C.1: Density Forecast for the US-CPI inflation 1973Q1-2012Q4 - Importance of the
score driven updating rule. ‘h’ denotes the forecast horizon. ‘BK’ denotes the p-value of the
test proposed by Berkowitz (2001), ‘RS’ is the test proposed by Rossi and Sekhposyan (2014)
with critical values 2.25 (1%), 1.51 (5%), 1.1 (10%). ‘ALS Diff’ and ‘CRPS Ratio’ denote the
difference in the ALS and the ratio of CRPS with respect to the correctly specified model. For
both statistics we also report the associated p-values of Amisano and Giacomini’s (2007). ‘KN’
denotes the p-value of Knüppel’s (2015) test.
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D Additional Figures and Tables
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Figure D.1: Implied “long-run” inflation, µt = φ0,t/(1−
∑p

j=1 φj,t), together with the realized
inflation: left panel Gaussian models, right panel Student-t models.
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Figure D.2: The implied “restricted” long-run trend for various specifications, “N” denotes
Gaussian distribution and “T” for Student-t distribution.
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Figure D.3: Implied volatility, log σt, for different specifications: left panel Gaussian models,
right panel Student-t models.
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Figure D.4: Largest eigenvalue for various specifications of the model with Student-t innova-
tions (dashed line) and Gaussian innovations (continuous line).
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Figure D.5: Sum of the ARs coefficients for various specifications of the model with Student-t
innovations (dashed line) and Gaussian innovations (continuous line).
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Figure D.6: Probability density function of the PITs (normalized) for various specifications of the model with 95% confidence interval (dashed
lines) constructed using a Normal approximation to a binomial distribution as in Diebold et al. (1998). Forecasting horizon: one quarter.
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Figure D.7: Probability density function of the PITs (normalized) for various specifications of the model with 95% confidence interval (dashed
lines) constructed using a Normal approximation to a binomial distribution as in Diebold et al. (1998). Forecasting horizon: one year.
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Figure D.8: Probability density function of the PITs (normalized) for various specifications of the model with 95% confidence interval (dashed
lines) constructed using a Normal approximation to a binomial distribution as in Diebold et al. (1998). Forecasting horizon: two years.

11



0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

h = 1

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

h = 4

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

h = 8

Figure D.9: Probability density function of the PITs (normalized) for one quarter (left panel),
one year (middle panel) and two years (right panel) density forecasts produced under the
SW model. The dashed lines denote the 95% confidence interval obtained using a Normal
approximation to a binomial distribution as in Diebold et al. (1998).
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one year (middle panel) and two years (right panel) density forecasts produced under the TVP-
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RMSFE MAE

h=1 h=4 h=8 h=16 h=1 h=4 h=8 h=16

TVP-VAR 2.131 2.786 3.143 3.196 1.477 1.927 2.004 2.167
Normal
Trend 1.024 1.007 1.055 1.145 0.984 1.054 1.195 1.208

(0.717) (0.941) (0.372) (0.180) (0.761) (0.440) (0.006) (0.066)
Trend-B 1.473 1.152 0.958 0.990 1.572 1.249 1.169 1.144

(0.000) (0.290) (0.795) (0.936) (0.000) (0.046) (0.252) (0.410)
AR(1) 0.989 0.950 0.913 0.976 0.981 1.001 1.036 1.056

(0.857) (0.658) (0.453) (0.743) (0.759) (0.991) (0.696) (0.504)
AR(1)-B 1.068 0.968 0.931 1.025 1.074 1.000 1.059 1.097

(0.335) (0.796) (0.632) (0.847) (0.290) (0.998) (0.579) (0.535)
AR(2) 1.003 0.933 0.966 1.004 0.979 0.996 1.090 1.081

(0.969) (0.507) (0.700) (0.957) (0.728) (0.958) (0.250) (0.407)
AR(2)-B 1.051 0.943 0.924 0.980 1.042 0.984 1.027 1.012

(0.457) (0.613) (0.530) (0.823) (0.488) (0.854) (0.748) (0.908)
AR(4) 0.972 0.912 0.938 1.001 0.953 0.979 1.054 1.033

(0.666) (0.390) (0.430) (0.994) (0.451) (0.764) (0.395) (0.701)
AR(4)-B 1.176 0.968 0.940 1.020 1.065 0.976 1.028 0.998

(0.292) (0.801) (0.677) (0.889) (0.483) (0.801) (0.764) (0.989)
Student-t
Trend 1.044 0.994 1.044 1.131 0.969 1.032 1.164 1.172

(0.605) (0.950) (0.374) (0.254) (0.665) (0.649) (0.005) (0.129)
Trend-B 1.436 1.118 0.928 0.952 1.449 1.152 1.104 1.043

(0.000) (0.419) (0.653) (0.677) (0.000) (0.205) (0.444) (0.782)
AR(1) 0.990 0.966 0.932 1.010 0.973 1.023 1.045 1.090

(0.886) (0.755) (0.528) (0.901) (0.661) (0.789) (0.630) (0.337)
AR(1)-B 0.980 0.946 0.912 0.985 0.975 0.950 0.981 0.980

(0.757) (0.670) (0.545) (0.908) (0.701) (0.612) (0.852) (0.889)
AR(2) 1.035 0.963 1.006 1.105 1.002 1.023 1.119 1.182

(0.620) (0.672) (0.925) (0.410) (0.974) (0.737) (0.141) (0.229)
AR(2)-B 1.040 0.963 0.962 1.047 1.051 0.985 1.041 1.086

(0.549) (0.740) (0.726) (0.636) (0.386) (0.855) (0.576) (0.383)
AR(4) 0.979 0.914 0.933 1.013 0.955 0.974 1.040 1.061

(0.754) (0.394) (0.413) (0.892) (0.482) (0.719) (0.608) (0.587)
AR(4)-B 1.048 0.967 0.980 1.041 1.035 0.994 1.074 1.014

(0.534) (0.785) (0.884) (0.781) (0.609) (0.947) (0.447) (0.923)

Table D.1: Point forecasts for US CPI inflation 1973Q1–2012Q4: Comparison with TVP-VAR
with stochastic volatility. The Root Mean Squared Error (RMSE) and the Mean Absolute
Error (MAE) are expressed in relative terms with respect to the SW model. The forecast
horizon is ‘h’. In brackets are the p-values of Giacomini and White’s (2006) test. Values in
bold denote a significance at the 10% level.
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PCE Deflator GDP Deflator

RMSFE MAE RMSFE MAE

h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8

SW 1.7399 2.169 2.204 1.188 1.572 1.683 1.267 1.628 1.804 0.899 1.201 1.359
Normal
Trend 0.879 0.966 1.056 0.872 0.938 1.035 0.858 0.969 1.021 0.880 0.928 1.003

(0.007) (0.489) (0.426) (0.008) (0.262) (0.581) (0.014) (0.578) (0.739) (0.005) (0.180) (0.967)
Trend-B 1.247 1.055 0.951 1.252 1.025 0.964 1.463 1.183 1.022 1.465 1.194 1.067

(0.001) (0.511) (0.680) (0.001) (0.782) (0.760) (0.000) 0.141 0.890 (0.000) (0.109) (0.649)
AR(1) 0.892 1.040 1.074 0.898 1.011 1.015 0.931 1.244 1.182 0.960 1.239 1.216

(0.025) (0.656) (0.676) (0.080) (0.914) (0.930) (0.325) (0.116) (0.423) (0.558) (0.113) (0.317)
AR(1)-B 0.881 0.985 1.029 0.885 0.985 1.025 0.875 1.158 1.204 0.938 1.250 1.366

(0.015) (0.839) (0.849) (0.052) (0.875) (0.874) (0.080) (0.167) (0.256) (0.341) (0.054) (0.066)
AR(2) 0.886 1.011 1.048 0.885 0.970 0.977 0.913 1.175 1.148 0.941 1.145 1.160

(0.011) (0.902) (0.784) (0.034) (0.763) (0.888) (0.191) (0.231) (0.512) (0.345) (0.314) (0.450)
AR(2)-B 0.878 0.940 0.981 0.871 0.939 0.985 0.840 0.924 0.948 0.875 0.928 1.002

(0.005) (0.319) (0.881) (0.012) (0.416) (0.907) (0.015) (0.287) (0.659) (0.014) (0.273) (0.986)
AR(4) 0.934 1.123 1.214 0.958 1.150 1.190 0.834 0.941 1.016 0.868 0.920 1.004

(0.259) (0.193) (0.276) (0.525) (0.165) (0.305) (0.019) (0.345) (0.763) (0.011) (0.168) (0.930)
AR(4)-B 0.878 0.927 1.015 0.879 0.897 0.986 0.925 1.124 1.246 0.989 1.230 1.434

(0.035) (0.273) (0.875) (0.047) (0.127) (0.881) (0.302) (0.249) (0.172) (0.871) (0.069) (0.034)
Student-t
Trend 0.905 0.949 1.029 0.883 0.908 1.003 0.823 0.954 1.029 0.858 0.935 1.008

(0.097) (0.335) (0.696) (0.031) (0.122) (0.970) (0.008) (0.481) (0.680) (0.003) (0.263) (0.906)
Trend-B 1.271 1.075 0.982 1.313 1.064 1.012 1.434 1.148 0.984 1.420 1.144 1.016

(0.000) (0.372) (0.880) (0.000) (0.498) (0.924) (0.000) (0.235) (0.920) (0.000) (0.223) (0.908)
AR(1) 0.895 1.048 1.079 0.901 1.013 1.015 0.935 1.250 1.187 0.962 1.239 1.214

(0.028) (0.605) (0.659) (0.088) (0.902) (0.930) (0.348) (0.112) (0.417) (0.572) (0.116) (0.324)
AR(1)-B 0.873 0.955 0.993 0.877 0.952 0.988 0.865 0.974 1.003 0.886 0.931 1.021

(0.011) (0.504) (0.961) (0.040) (0.584) (0.934) (0.035) (0.775) (0.975) (0.039) (0.353) (0.837)
AR(2) 0.889 1.008 1.047 0.889 0.969 0.979 0.916 1.179 1.150 0.940 1.141 1.153

(0.011) (0.921) (0.788) (0.036) (0.754) (0.898) (0.205) (0.227) (0.514) (0.339) (0.329) (0.474)
AR(2)-B 0.900 0.929 0.980 0.901 0.946 1.000 0.817 0.917 0.935 0.864 0.922 0.997

(0.024) (0.179) (0.831) (0.063) (0.391) (0.998) (0.007) (0.299) (0.648) (0.007) (0.298) (0.981)
AR(4) 0.882 0.891 0.974 0.900 0.882 0.968 0.982 1.317 1.237 0.957 1.188 1.123

(0.012) (0.049) (0.669) (0.045) (0.045) (0.595) (0.806) (0.090) (0.376) (0.533) (0.227) (0.590)
AR(4)-B 0.880 0.888 0.975 0.889 0.884 0.966 0.927 0.981 1.052 0.974 0.982 1.059

(0.037) (0.070) (0.831) (0.062) (0.098) (0.772) (0.315) (0.772) (0.526) (0.666) (0.763) (0.470)

Table D.2: Point forecast of the US PCE Deflator and GDP Deflator 1973Q1–2012Q4. The
Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) are expressed in
relative term with respect to the SW model. ‘h’ is the forecast horizon, in brackets the p-
values of the Giacomini and White (2006) test (star when it is significant at 10% level).
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h=1 h=4 h=8

BK RS ALS CRPS KN ALS CRPS KN ALS CRPS

N
or

m
al

CA

Trend 0.000 5.726 -2.457 - 1.053 - 0.000 -2.519 - 1.269 - 0.087 -3.284 - 1.496 -
AR(1) 0.000 6.125 -2.370 0.102 1.005 0.132 0.000 -2.641 0.005 1.250 0.705 0.000 -2.715 0.387 1.455 0.553
AR(2) 0.000 5.341 -2.359 0.057 1.014 0.093 0.000 -2.548 0.433 1.203 0.045 0.000 -2.618 0.316 1.409 0.027
AR(4) 0.000 7.604 -2.504 0.367 1.099 0.245 0.000 -2.801 0.000 1.323 0.416 0.000 -2.887 0.557 1.550 0.590

FR

Trend 0.000 1.646 -2.398 - 0.761 - 0.000 -2.953 - 1.018 - 0.000 -3.156 - 1.214 -
AR(1) 0.000 1.154 -2.203 0.541 0.780 0.495 0.000 -2.519 0.276 1.062 0.426 0.000 -2.942 0.451 1.296 0.247
AR(2) 0.000 18.541 -2.552 0.724 1.197 0.000 0.000 -3.862 0.123 3.441 0.000 0.000 -3.982 0.089 4.415 0.000
AR(4) 0.000 18.541 -2.730 0.449 1.334 0.000 0.000 -4.275 0.027 4.344 0.000 0.000 -4.512 0.006 6.214 0.000

DE

Trend 0.061 1.742 -1.910 - 0.762 - 0.051 -2.189 - 0.982 - 0.000 -2.391 - 1.230 -
AR(1) 0.002 3.281 -2.003 0.001 0.821 0.029 0.051 -2.270 0.245 1.039 0.056 0.839 -2.392 0.991 1.215 0.710
AR(2) 0.000 3.446 -2.019 0.003 0.824 0.028 0.048 -2.216 0.695 1.000 0.573 0.695 -2.318 0.352 1.152 0.069
AR(4) 0.000 3.584 -1.963 0.216 0.811 0.103 0.000 -2.194 0.949 1.049 0.042 0.000 -2.289 0.296 1.203 0.490

JP

Trend 0.000 2.312 -2.587 - 0.894 - 0.000 -3.221 - 1.292 - 0.000 -4.492 - 1.559 -
AR(1) 0.000 5.904 -2.584 0.980 0.958 0.137 0.000 -3.031 0.391 1.498 0.011 0.000 -4.116 0.233 1.823 0.020
AR(2) 0.000 6.085 -2.522 0.537 0.932 0.287 0.000 -2.810 0.094 1.378 0.248 0.000 -3.662 0.059 1.648 0.350
AR(4) 0.000 12.202 -2.621 0.917 1.024 0.007 0.000 -3.248 0.935 1.433 0.016 0.000 -3.444 0.204 1.657 0.038

IT

Trend 0.005 5.127 -2.599 - 1.011 - 0.671 -2.676 - 1.208 - 0.349 -2.658 - 1.370 -
AR(1) 0.000 11.901 -2.588 0.952 1.164 0.004 0.000 -2.811 0.129 1.541 0.000 0.000 -2.834 0.006 1.682 0.002
AR(2) 0.000 19.253 -2.865 0.158 1.363 0.000 0.000 -3.082 0.000 1.830 0.000 0.000 -3.098 0.000 1.992 0.000
AR(4) 0.000 16.485 -2.810 0.253 1.244 0.000 0.000 -2.986 0.006 1.596 0.000 0.000 -3.045 0.000 1.712 0.000

UK

Trend 0.034 7.595 -2.737 - 1.285 - 0.293 -3.005 - 1.579 - 0.000 -3.402 - 1.848 -
AR(1) 0.018 6.529 -2.855 0.082 1.329 0.509 0.029 -3.283 0.009 1.761 0.003 0.137 -3.681 0.068 1.962 0.152
AR(2) 0.000 13.657 -2.828 0.151 1.334 0.414 0.000 -3.165 0.283 1.893 0.003 0.000 -3.317 0.702 2.165 0.037
AR(4) 0.000 15.181 -3.102 0.000 1.603 0.000 0.000 -3.752 0.000 2.155 0.000 0.000 -4.012 0.012 2.562 0.000

S
tu

d
en

t-
t

CA

Trend 0.527 0.357 -1.446 0.000 1.052 0.270 0.001 -1.663 0.000 1.242 0.125 0.000 -1.943 0.042 1.426 0.350
AR(1) 0.362 0.897 -1.403 0.000 1.005 0.133 0.067 -1.428 0.000 1.224 0.699 0.006 -1.530 0.009 1.387 0.548
AR(2) 0.365 1.076 -1.447 0.000 1.016 0.111 0.039 -1.516 0.000 1.179 0.045 0.000 -1.646 0.012 1.341 0.025
AR(4) 0.370 0.928 -1.489 0.000 1.102 0.207 0.011 -1.607 0.000 1.298 0.397 0.000 -1.795 0.022 1.477 0.591

FR

Trend 0.483 0.843 -1.430 0.011 0.762 0.184 0.000 -1.788 0.021 0.997 0.357 0.000 -1.902 0.003 1.157 0.362
AR(1) 0.010 2.837 -1.627 0.061 0.786 0.366 0.000 -1.882 0.055 1.041 0.418 0.000 -2.086 0.018 1.225 0.298
AR(2) 0.327 1.863 -1.561 0.038 1.200 0.000 0.014 -1.577 0.012 3.335 0.000 0.000 -1.749 0.001 4.142 0.000
AR(4) 0.000 2.093 -1.341 0.016 1.344 0.000 0.000 -1.375 0.007 4.173 0.000 0.000 -1.459 0.001 5.734 0.000

DE

Trend 0.062 0.441 -1.457 0.000 0.770 0.020 0.856 -1.664 0.000 0.958 0.211 0.005 -1.916 0.000 1.154 0.000
AR(1) 0.064 0.720 -1.535 0.000 0.832 0.007 0.234 -1.652 0.000 1.023 0.042 0.093 -1.826 0.000 1.152 0.600
AR(2) 0.032 0.984 -1.536 0.000 0.835 0.007 0.356 -1.620 0.000 0.983 0.504 0.208 -1.783 0.000 1.092 0.047
AR(4) 0.146 1.154 -1.433 0.000 0.813 0.084 0.044 -1.577 0.000 1.028 0.041 0.001 -1.710 0.000 1.145 0.465

JP

Trend 0.161 1.252 -1.518 0.000 0.901 0.002 0.000 -2.011 0.000 1.262 0.157 0.000 -2.303 0.003 1.471 0.000
AR(1) 0.000 5.191 -1.589 0.002 0.970 0.067 0.000 -2.021 0.000 1.477 0.006 0.000 -2.252 0.007 1.739 0.016
AR(2) 0.000 4.131 -1.554 0.001 0.942 0.151 0.000 -1.962 0.000 1.360 0.180 0.000 -2.178 0.006 1.574 0.317
AR(4) 0.034 2.226 -1.643 0.004 1.110 0.000 0.014 -1.760 0.000 1.527 0.000 0.001 -1.838 0.001 1.713 0.000

IT

Trend 0.431 1.001 -1.521 0.000 1.029 0.000 0.466 -1.687 0.000 1.191 0.102 0.014 -1.835 0.000 1.303 0.571
AR(1) 0.000 5.904 -1.344 0.000 1.187 0.001 0.000 -1.387 0.000 1.514 0.000 0.000 -1.435 0.000 1.596 0.001
AR(2) 0.000 5.687 -1.402 0.000 1.385 0.000 0.000 -1.436 0.000 1.785 0.000 0.000 -1.479 0.000 1.882 0.000
AR(4) 0.000 10.450 -1.436 0.000 1.267 0.000 0.000 -1.569 0.000 1.573 0.000 0.000 -1.566 0.000 1.636 0.000

UK

Trend 0.886 0.384 -1.632 0.000 1.311 0.000 0.018 -1.872 0.000 1.558 0.053 0.000 -2.057 0.000 1.760 0.824
AR(1) 0.595 0.420 -1.673 0.000 1.367 0.199 0.948 -1.682 0.000 1.776 0.001 0.645 -1.778 0.000 1.916 0.052
AR(2) 0.824 0.881 -1.551 0.000 1.355 0.241 0.728 -1.540 0.000 1.861 0.002 0.448 -1.646 0.000 2.058 0.036
AR(4) 0.015 5.303 -1.397 0.000 1.616 0.000 0.000 -1.294 0.000 2.136 0.000 0.000 -1.282 0.000 2.467 0.000

Table D.3: Density Forecast for the G7 countries CPI inflation 1973Q1-2012Q4 - All specifi-
cations. ‘h’ denotes the forecast horizon. ‘BK’ denotes the p-value of the test proposed by
Berkowitz (2001), ‘RS’ is the test proposed by Rossi and Sekhposyan (2014) with critical val-
ues 2.25 (1%), 1.51 (5%), 1.1 (10%), ‘ALS’ denotes the Average Log Score, ‘CRPS’ denotes
the Continuous Ranked Probability Score, for both statistics we report the associated p-values
of Amisano and Giacomini’s (2007) test with respect to the Trend specification with Normal
distribution. ‘KN’ denotes the p-value of Knüppel’s (2015) test.

16


