
▪ Birkbeck, University of London ▪ Malet Street ▪ London ▪ WC1E 7HX ▪ 

ISSN 1745-8587 

 
 

 
 

BCAM 1403 

 

 
Estimating and Forecasting the Yield 

Curve Using a Markov 
Switching Dynamic Nelson and Siegel 

Model 
 
 

Constantino Hevia 
World Bank 

 
Martin Gonzalez-Rozada 

Universidad Torcuato Di Tella 
 

Martin Sola 
Birkbeck, University of London 

 
Fabio Spagnolo 
Brunel University 

 
 

July 2014 
 
 

 

B
ir

k
b

e
c

k
 C

e
n

tr
e

 f
o

r 
A

p
p

li
e
d

 M
a

c
ro

e
c

o
n

o
m

ic
s

 



Estimating and Forecasting the Yield Curve Using a Markov

Switching Dynamic Nelson and Siegel Model

Constantino Heviaa;c;�, Martin Gonzalez-Rozadac,
Martin Solab;c, and Fabio Spagnolod

aWorld Bank, Washington DC, USA
bSchool of Economics, Mathematics & Statistics, Birkbeck College, London, UK

cDepartment of Economics, Universidad Torcuato Di Tella, Buenos Aires, Argentina
dDepartment of Economics and Finance, Brunel University, Uxbridge, UK

This draft: January 2014; First draft: July 2011

Abstract

We estimate versions of the Nelson-Siegel model of the yield curve of U.S. government

bonds using a Markov switching latent variable model that allows for discrete changes in

the stochastic process followed by the interest rates. Our modeling approach is motivated

by evidence suggesting the existence of breaks in the behavior of the U.S. yield curve that

depend, for example, on whether the economy is in a recession or a boom, or on the stance

of monetary policy. Our model is parsimonious, relatively easy to estimate, and �exible

enough to match the changing shapes of the yield curve over time. We also derive the

discrete time non-arbitrage restrictions for the Markov switching model. We compare the

forecasting performance of these models with that of the standard dynamic Nelson and

Siegel model and an extension that allows the decay rate parameter to be time-varying.

We show that some parameterizations of our model with regime shifts outperform the

single regime Nelson and Siegel model and other standard empirical models of the yield

curve.
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1 Introduction

Recent developments in the modeling of government bond yields assume that a handful of pos-

sibly unobserved factors determine the evolution of the entire yield curve. Broadly speaking,

the literature on the yield curve evolved into two related branches: the class of arbitrage-free

a¢ ne term structure models (e.g. Piazzesi, 2010) and the class of dynamic Nelson and Siegel

(1987) models, as proposed by Diebold and Li (2006). Both classes of models assume that

observed yields are an a¢ ne function of the factors, thereby reducing the variability of the

entire yield curve to the variability of a few factors. The two approaches di¤er in the construc-

tion of the factor loadings and, possibly as well, in the interpretation of the factors. While in

arbitrage-free models the factor loadings are derived from imposing lack of arbitrage across

bonds of di¤erent maturities� using an appropriate log-linear stochastic discount factor� the

class of Nelson and Siegel models impose a parsimonious parametric structure to the loading

on the factors. These loadings are a function of a single parameter, which we denote by �,

usually referred to as the �exponential decay rate parameter.�1

Within the dynamic Nelson and Siegel framework (DNS), there are three unobserved

factors that evolve as a vector autoregression of order one. While widely used by practitioners,

this framework has two potential shortcomings: �rst, the model does not rule out arbitrage

opportunities across bonds of di¤erent maturities, and second, the crucial exponential decay

rate parameter seems to change over time. As a response to these shortcomings, the literature

evolved in di¤erent ways: Christensen et al., (2011) derive arbitrage-free conditions for the

DNS model and evaluate to what extent they improve the forecasting ability of the model,

while Koopman et al., (2010) model the exponential decay rate parameter � as a fourth

unobserved component, thereby a¤ecting the loadings on the other three factors.2

To our knowledge, it is not possible to account for both extensions simultaneously. There-

fore, the purpose of this paper is twofold. First, to evaluate whether the changes in the yield

1Work in the arbitrage-free tradition includes, among others, Knez et al., (1994); Du¢ e and Khan (1996),
Dai and Singleton (2000), and Ang and Piazzesi (2003). Work in the Nelson and Siegel tradition includes
Diebold et al., (2006); Yu and Zivot (2006); and Bianchi et al., (2009).

2Fitting a Nelson and Siegel model using arbitrage-free data, however, could presumably produce a �tted
yield curve that is approximately arbitrage-free (see the �ndings in Coroneo et al., 2011).
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curve driven by changes in the key parameter � can be captured using a two regime Markov

switching model to avoid potential over�tting of the data. And second, to what extent it

is possible to incorporate non-arbitrage restrictions within the Markov switching framework

and, at the same time, account for changes in the shape of the yield curve over time.3 In all

cases, we conduct a forecasting exercise to evaluate the relative merits of allowing for variation

in the parameter � and of imposing the non-arbitrage restrictions to the Markov switching

model. For comparison purposes, we also present a version of the four factor DNS model of

Koopman et al., (2010).

To obtain the arbitrage-free representation of the Markov switching DNS model (MS-

DNS), we extend Niu and Zeng (2012) who provide a discrete time derivation of the (single

regime) arbitrage-free DNS model of Christensen et al., (2011). Importantly, we found that

imposing non-arbitrage restrictions to the MS-DNS model requires the parameter � to be

constant across regimes. Therefore, the arbitrage-free MS-DNS model can only have switching

in the measurement equation through an additional regime-speci�c constant implied by the

absence of arbitrage� of course, the model also allows for switching in the state equation.4

All the models that we consider have a state-space representation, where a state equation

determines the evolution of a set of unobserved state variables, and a measurement equation

relates the observed yields to the state variables. A Markov switching structure can be

added to the state equation, to the measurement equation, or to both. Our results strongly

suggest that the Markov switching parameterization needs to be present in the measurement

equation.5 This can be achieved either by allowing the parameter � in the measurement

equation to switch across regimes, or by �xing the parameter � while imposing non-arbitrage

restrictions. The latter speci�cation introduces an additional maturity-speci�c constant that
3Using rolling windows, Coroneo et al. (2013) report that the mean squared errors of the forecasts of excess

holding bond returns increase dramatically at the beginning of recessions. This result is consistent with the
view that the yield curve may be subject to structural shifts.

4Xiang and Zhu (2013) propose a MS-DNS model with switching only in the state equation. Bandara and
Munclinger (2012) derive arbitrage-free restrictions in a continuous time version of the MS-DNS model. They
assume that there is no switching in the parameter � and do not discuss if this is a parameterization choice
or a necessary condition for the absence of arbitrage. Furthermore, they do not perform forecasting exercises,
which is one of the main objetives of this paper.

5The reason is that the single regime DNS model is quite successful in modeling the three unobserved
components. Our estimated models with only switching in the unobserved components do not improve the �t
of the model relative to the single regime model.
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switches across regimes. The proposed Markov switching models, with and without non-

arbitrage restrictions, are parsimonious and relatively easy to estimate. This simplicity is

accomplished by evaluating the likelihood function using an approximate non-linear �lter

that collapses a growing mixtures of densities to a single density, dramatically reducing the

dimensionality of the estimation problem.

Based on US zero-coupon data, all of our estimated models present signi�cant evidence

of regime shifts. Our results suggest that the conventional stylized facts of the yield curve

are roughly associated with booms or with periods of active monetary policy as identi�ed

by Bikbov and Chernov (2013). In contrast, the characteristics of the yield curve during

recessions are rather di¤erent. The models that we propose seem to not only successfully

characterize the data under scrutiny but also, and more importantly, to have a good forecasting

performance. Some of the models with a Markov switching structure have a better forecasting

performance than standard empirical models of the yield curve. The forecasting results are

particularly noteworthy because one of the perceived weaknesses of nonlinear models is their

relatively poor out-of-sample performance.

We compare the forecasting performance of the proposed models to that of the single

regime DNS model by computing mean squared errors, tests of equal forecast accuracy, and the

proportion of times that each model attains the lowest forecast error. We found that imposing

non-arbitrage restrictions to the Markov switching model seems to produce improved forecasts

relative to the single regime DNS model only at short and medium horizons. In addition, some

parameterizations of the Markov switching models that allow for shifts in the parameter ��

and hence, do not impose arbitrage restrictions� have better forecasting performance than the

single regime DNS model. On the other hand, the four factor DNS model in which � is treated

as a fourth unobserved factor outperforms all the other models in terms of �t. Interestingly,

we found that this model performs very well in terms of forecasting but only at the shortest

forecast horizon (1 month ahead). Yet, over�tting seems to be a problem since the forecasting

performance of the model at medium and long horizons is rather poor relative to the other

models. Overall, the paper shows that several models have better forecasting performance
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than the single regime three-factor model and that which model is preferred depends on the

particular forecast horizon that is considered.

The paper is organized as follows. Section 2 presents the di¤erent extensions of the

dynamic Nelson and Siegel model that we use throughout the paper. Section 3 describes the

econometric model and an approximate �ltering algorithm used to evaluate the likelihood

function of the nonlinear models. In Section 4 we apply the models using U.S. data on

government bond yields and assess the out-of-sample performance of the models. Section 5

concludes.

2 Models of the yield curve

This section describes di¤erent extensions of the Nelson and Siegel (1987) model that we use

to parameterize the yield curve. The basic framework is the dynamic version of the Nelson

and Siegel model developed by Diebold and Li (2006), which consists of a parsimonious model

of the yield curve of the form

Rt(�) = �1t + �2t
1� e���
��

+ �3t

�
1� e���
��

� e���
�
+ "t (�) ; (1)

where t denotes time; Rt (�) is the yield for a zero-coupon bond that matures in � months;

�t = f�1t; �2t; �3tg is a vector of unobserved latent factors that evolve as a �rst order vector

autoregression; � is a parameter associated with the exponential rate of decay of the factor

loadings at di¤erent maturities; and "t (�) is a measurement error distributed as N (0; Q),

where Q is a covariance matrix with dimension equal to the number of observed yields.6

As usual, measurement errors are added to avoid the inherent stochastic singularity of the

model.7 Following Diebold et al., (2006), we estimate the parameters of this model� namely,

� and the parameters of the process for the latent factors� using maximum likelihood, where

the likelihood function is evaluated using the Kalman �lter.

6Throughout the paper, N (�;
) denotes a Normal distribution with mean � and covariance matrix 
.
7One of the main insights obtained from Diebold and Li (2006) is that �1t is a long term factor associated

with the level of interest rates, �2t is a short term factor associated with the slope of the yield curve, and �3t
is a medium term factor associated with the curvature of the yield curve.
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2.1 The Markov switching dynamic Nelson and Siegel model

The MS-DNS model postulates that there is an unobservable random variables xt taking the

values 0 or 1 that indexes the two di¤erent �regimes�in which the economy could be at time

t. The variable xt evolves over time according to a time-homogeneous Markov chain with

transition probabilities

p00 = Pr (xt+1 = 0jxt = 0) and p11 = Pr (xt+1 = 1jxt = 1) : (2)

The yield of a zero-coupon bond that mature in � months is now given by

Rt (�) = (1� xt)R0t (�) + xtR1t (�) ;

where

Rit(�) = �1t + �2t
1� e��i�
�i�

+ �3t

�
1� e��i�
�i�

� e��i�
�
+ "it (�) (3)

is the yield conditional on regime i = 0; 1. In addition, "it is a vector of measurement errors

with dimension equal to the number of observed yields distributed as N (0; Qi) ; where Qi is a

state-dependent covariance matrix for i = 0; 1. The distribution of the dynamic latent factors

�t = f�1t; �2t; �3tg conditional on xt is determined by the autoregressive process

�t = �i + Fi�t�1 + �it; (4)

where i = 0; 1 denote the regime, �i =
�
�1i ; �

2
i ; �

3
i

�0, Fi is a 3 � 3 matrix, and �it is a 3 � 1
innovation normally distributed with mean zero and covariance matrix Hi. We parameterize

�i = �0(1�xt)+�1xt; Qi = Q0 (1� xt)+Q1xt, �i = �0 (1� xt)+�1xt, Fi = F0 (1� xt)+F1xt,

and Hi = H0 (1� xt) +H1xt.

The key feature of this model is that the yield curve depends on a variable that can be

interpreted as capturing discrete changes in economic conditions. For example, this framework

is able to capture that the slope of the yield curve is di¤erent at the di¤erent phases of the

business cycle. This parameterization is intended to capture those e¤ects.
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2.1.1 The Markov switching DNS model with non-arbitrage restrictions

In this subsection we derive an arbitrage-free version of the MS-DNS model by extending the

results in Niu and Zeng (2012) to a Markov switching framework. These authors provide a

derivation in discrete time of the arbitrage-free DNS model obtained by Christensen et al.,

(2011) in continuous time. The arbitrage-free DNS model has a structure similar to that of

pure a¢ ne models, but with restrictions on the values of the parameters of the key recursions

associated with the class of a¢ ne term structure models.

As we show in the Appendix, the arbitrage-free MS-DNS model conditional on regime

i = 0; 1 can be expressed as

Rit(�) = �
Ai(�)

�
+ �1t + �2t

1� e���
��

+ �3t

�
1� e���
��

� e���
�
+ "it (�) ; (5)

where the constant Ai (�) depends on the maturity of the bond and is determined recursively,

under the risk-neutral measure, by the following pair of di¤erence equations

Ai(�) = pii

�
Ai(� � 1) +

1

2
B0 (� � 1)HiB (� � 1) +B0 (� � 1) �i

�
+pij

�
Aj(� � 1) +

1

2
B0 (� � 1)HjB (� � 1) +B0 (� � 1) �j

�
;

B (�) = ��0 +�0B (� � 1) ;

for i; j = 0; 1 and i 6= j; where � is a 3�1 vector and � is a 3�3 matrix. The initial conditions

for the recursion are Ai (0) = 0 and Bi (0) = 1. Following Dai and Singleton (2000) and Niu

and Zeng (2012), for identi�cation of the model we set �i = ( i; 0; 0)
0, where  0 and  1 are

free parameters to be estimated along with the other parameters of the model. The Appendix

shows the unique values that � and � must take for the model to be consistent with the lack

of arbitrage opportunities.

There are a number of points that are worth mentioning. As we discuss in the Appendix,

the arbitrage-free MS-DNS model can only be derived by restricting the parameter � to be

the same in both regimes. Therefore, this result and equation (5) imply that there could
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be switching in the measurement equation only because the constants Ai (�) are allowed

to switch� through shifts in the parameter  i. In addition, even though the arbitrage-free

model (5) has more parameters than the MS-DNS model ( 0 and  1), there is no restriction

on these parameters that delivers the MS-DNS model as a special case. This follows from the

observation that Ai (�) cannot be made equal to zero for any choice of  i. The property that

the models are non-nested was already discussed by Christensen et al., (2011) in the context

of the single regime model.

2.2 A dynamic Nelson and Siegel model with continuously time-varying �

The last model that we consider is the four factor DNS model proposed by Koopman et

al., (2010). This model allows for changes in the parameter �t as an additional unobserved

component within the single regime Nelson and Siegel model. The observed yield Rt (�) is

now assumed to be given by

Rt (�) = �1t + �2t

�
1� e��t�
�t�

�
+ �3t

�
1� e��t�
�t�

� e��t�
�
+ "t (�) ; (6)

where the unobserved factors (�1t; �2t; �3t; log �t) evolve as a stable �rst order vector autore-

gression. As discussed below, the additional latent factor �t gives the model substantially more

�exibility to match the di¤erent shapes of the yield curve over time, leading to a markedly

improved in-sample �t relative to the baseline DNS model

Because �t enters nonlinearly in the measurement equation (6), we follow Koopman et al.,

(2010) and linearize the model around the long-run values (��1; �
�
2; �

�
3; log �

�) implied by the

stochastic process followed by the latent variables. Once the observation equation is linearized,

we use the Kalman �lter to perform the maximum likelihood estimation of the parameters.

Linearizing equation (6) gives

Rt (�) � �1t + �2t

�
1� e����
���

�
+ �3t

�
1� e����
���

� e����
�

+

�
(��2 + �

�
3)

�
e��

�� (1 + ���)� 1
���

�
+ ��3��

�e��
��

�
(log �t � log ��) + "t (�) :
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3 The econometric model

In this section we present an econometric model that accounts for the existence of di¤erent

regimes when estimating the yield curve.8 The model postulates the existence of an unob-

served discrete variable, xt 2 f0; 1; ::;Kg, which indexes the current regime and follows a

Markov chain with transition probabilities pij = Pr (xt = jjxt�1 = i) for i; j = 0; 1; :::;K. At

time t = 1, the probability of x1 is given by Pr (x1). We consider the following conditional

linear Gaussian model where, for any t � 1 and regime xt, the observation and state equations

are given by

yt = �xtft + "xtt (7)

ft = �xt +Axtft�1 + �xtt: (8)

Here, yt 2 <m is a vector of observed variables, ft 2 <n is a vector of unobserved continuous

state variables, "xtt 2 <m is normally distributed with mean zero andm�m covariance matrix

Qxt ; �xt 2 <n; Axt is an n� n matrix; and �xtt 2 <n is normally distributed with mean zero

and n�n covariance matrix Hxt . Moreover, �xtt and "xtt are independent of each other at all

leads, lags, contemporaneously for di¤erent xt, and independent of f0, where f0 is Gaussian

with mean bf0 and n� n covariance matrix V0.
3.1 Approximate �ltering and evaluation of the likelihood function

Given a vector of parameters � and a sample Y T = fy1; y2; :::; yT g, we evaluate the log-

likelihood function using the prediction-error decomposition formula

`
�
�;Y T

�
=

TX
t=1

log Pr
�
ytjY t�1

�
;

where Y t�1 = fy1; y2; :::; yt�1g denotes the history of observations up to time t � 1. The

probabilities Pr
�
ytjY t�1

�
are obtained as a by-product of a recursive Bayesian �lter used

8Di¤erent names of this model are: Multi-process class-II model (Harrison and Stevens, 1976), Dynamic
linear model with Markov-switching (Kim, 1994), and State-space models with Markov-switching (Kim and
Nelson, 1999).
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to estimate the distribution of the latent variables ft and xt conditional on Y t�1. As it is

well known, Bayesian �ltering with Markov switching implies that posterior distributions are

mixtures of prior distributions that grow exponentially with time. We operationalize the �lter

by collapsing the posterior mixture distribution of the unobserved state to a single distribution

at each time t.

Given �ltered probabilities Pr
�
ft�1jY t�1

�
and Pr

�
xt�1jY t�1

�
, we begin by computing the

posterior densities Pr
�
ftjY t

�
and Pr

�
xtjY t

�
, and the contribution to the likelihood function

Pr
�
ytjY t�1

�
. To that end, suppose that the �ltered probability Pr

�
ft�1jY t�1

�
is Gaussian,

Pr
�
ft�1jY t�1

�
= N( bft�1jt�1; Vt�1jt�1): (9)

The vector
�
ft�1jY t�1

	
is Gaussian by assumption at t = 1 and by our approximating formula

at any other t > 1.

3.1.1 The prediction step

Model (8) implies that the prediction probability Pr
�
ftjY t�1; xt = j

�
is Gaussian, as it is an

a¢ ne function of two Gaussian random variables,
�
ft�1jY t�1

	
and �jt. Thus, Pr

�
ftjY t�1; xt = j

�
=

N( bf jtjt�1; V jtjt�1), where
bf jtjt�1 = �j +Aj

bft�1jt�1 and V jtjt�1 = AjVt�1jt�1A
0
j +Hj :

Likewise, equation (7) implies that Pr
�
ytjY t�1; xt = j

�
= N(byjtjt�1;
jtjt�1), where

byjtjt�1 = �j bf jtjt�1 and 
jtjt�1 = �jV jtjt�1�0j +Qj :
It then follows that the contribution to the likelihood function at time t, Pr

�
ytjY t�1

�
, is

9



a mixture of K Gaussian variables,

Pr
�
ytjY t�1

�
=

KX
j=0

Pr
�
xt = jjY t�1

�
Pr
�
ytjY t�1; xt = j

�
=

KX
j=0

 
KX
i=0

pij Pr
�
xt�1 = ijY t�1

�!
Pr
�
ytjY t�1; xt = j

�
; (10)

where the second equality uses Bayes�law and Pr
�
xt = jjxt�1 = i; Y t�1

�
= pij .

3.1.2 The updating step

Given the observation yt, we use Bayes� law to update the probabilities Pr
�
xtjY t

�
and

Pr
�
ftjY t

�
. In particular,

Pr
�
xt = jjY t

�
=
Pr
�
ytjY t�1; xt = j

�PK
i=0 pij Pr

�
xt�1 = ijY t�1

�
Pr (ytjY t�1)

and

Pr
�
ftjY t; xt = j

�
=
Pr
�
ytjft; Y t�1; xt = j

�
Pr
�
ftjY t�1; xt = j

�
Pr (ytjY t�1; xt = j)

:

Using standard arguments, it is easy to show that Pr
�
ftjY t; xt = j

�
= N(f̂ jtjt; V

j
tjt), where the

mean and covariance matrix are given by

bf jtjt = bf jtjt�1 + V jtjt�1�0j �
jtjt�1��1 �yt � �j bf jtjt�1� ;
V jtjt = V jtjt�1 � V

j
tjt�1�

0
j

�

jtjt�1

��1
�jV

j
tjt�1:

A direct corollary of this observation is that Pr
�
ftjY t

�
is a mixture ofK+1Gaussian variables,

Pr
�
ftjY t

�
=

KX
j=0

Pr
�
xt = jjY t

�
Pr
�
ftjY t; xt = j

�
:

3.1.3 Collapsing the posterior probability Pr
�
ftjY t

�
So far we showed that, if the prior probability Pr

�
ft�1jY t�1

�
is Gaussian, the posterior

probability Pr
�
ftjY t

�
is a mixture of K + 1 Gaussian distributions. We operationalize the

10



recursive evaluation of the �lter by collapsing Pr
�
ftjY t

�
to a single Gaussian distribution. In

particular, the best approximating Gaussian distribution under the Kullback-Leibler pseudo-

distance has the mean and covariance matrix of the Gaussian mixture (West and Harrison,

1997). Simple algebra shows that these means and covariances are given by

bftjt =

KX
j=0

Pr
�
xt = jjY t

� bf jtjt; and
Vtjt =

KX
j=0

Pr
�
xt = jjY t

��
V jtjt +

� bftjt � bf jtjt�� bftjt � bf jtjt�0�

This assumption closes the approximate recursive Bayesian �lter. Note that, even though

the �ltered probability of the state ft is collapsed to a single Gaussian, the contribution to

the likelihood function Pr
�
ytjY t�1

�
is always a Gaussian mixture with K + 1 components.

3.2 Forecasting

In this section we discuss an algorithm to compute optimal forecasts using the Markov switch-

ing model (7)-(8). As in the �ltering step, forecast distributions are Gaussian mixtures that

grow exponentially with the forecast horizon. However, because our longest forecast horizon

is only 12 periods ahead, we are able to keep track of the growing Gaussian mixture.

We start forecasting at some time t using the �ltered probabilities Pr
�
xtjY t

�
and Pr

�
ftjY t

�
obtained from the approximate Bayesian �lter. Consider �rst forecasting future regime prob-

abilities xt+h at some horizon h > 0. Given the Markovian structure,

Pr
�
xt+h = jjY t

�
=

KX
i=0

p
(h)
ij Pr

�
xt = ijY t

�
:

where p(h)ij , the probability of moving from state i to state j in h periods, is equal to the (i; j)

element of the matrix P h.

Consider now the one-step ahead density Pr
�
ft+1jY t; xt+1 = i1

�
. Equation (8) implies

that

Pr
�
ft+1jY t; xt+1 = i1

�
= N

� bf i1t+1jt; V i1t+1jt�
11



where bf i1t+1jt = �i1 + Ai1
bftjt; and V i1t+1jt = Ai1VtjtA

0
i1
+Hi1 : Integrating out the regimes gives

the marginal probability

Pr
�
ft+1jY t

�
=

KX
i1=0

Pr
�
ft+1jY t; xt+1 = i1

�
Pr
�
xt+1 = i1jY t

�
:

Similarly, equation (7) implies

Pr
�
yt+1jY t; xt+1 = i1

�
= N

�byi1t+1jt;
i1t+1jt�

where byi1t+1jt = �i1 bf i1t+1jt; and 
i1t+1jt = �i1V i1t+1jt�0i1+Qi1 : Integrating over future regimes gives
the forecast density

Pr
�
yt+1jY t

�
=

KX
i1=0

Pr
�
yt+1jY t; xt+1 = i1

�
Pr
�
xt+1 = i1jY t

�
:

Repeating the previous argument, equations (7) and (8) imply that the conditional h-

period ahead forecast densities satisfy

Pr
�
ft+hjY t; xt+1 = i1; xt+2 = i2; :::; xt+h = ih

�
= N

� bf i1;i2:::;iht+hjt ; V i1;i2:::;iht+hjt

�
Pr
�
yt+hjY t; xt+1 = i1; xt+2 = i2; :::; xt+h = ih

�
= N

�byi1;i2:::;iht+hjt ;
i1;i2:::;iht+hjt

�

where bf i1;i2:::;iht+hjt = �ih + Aih
bf i1;i2:::;ih�1t+h�1jt , V i1;i2:::;iht+hjt = AihV

i1;i2:::;ih�1
t+h�1jt A0ih + Hih , byi1;i2:::;iht+� jt =

�ih
bf i1;i2:::;iht+hjt , and 
i1;i2:::;iht+� jt = �ihV

i1;i2:::;ih
t+hjt �0ih +Qih : Integrating over future regimes gives the

forecast densities

Pr
�
ft+hjY t

�
=

KX
i1;:::;ih=0

Pr
�
ft+hjY t; xt+1 = i1; :::; xt+h = ih

�
Pr
�
xt+h = ihjY t

�
Pr
�
yt+hjY t

�
=

KX
i1;:::;ih=0

Pr
�
yt+hjY t; xt+1 = i1; :::; xt+h = ih

�
Pr
�
xt+h = ihjY t

�

These prediction densities are used to compute the forecasts E
�
yt+hjY t

�
.

Note that the h-period ahead forecast densities are a mixture of (K + 1)h Gaussian vari-
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ables. With K = 1 and h = 12 months, this is a mixture with 4096 components. While large,

this mixture is still manageable using a standard laptop computer.

4 Empirical results

We examine U.S. Treasury yields of �xed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48,

60, 72, 84, 96, 108 and 120 months. The yields are derived from bid-ask average price quotes,

from January 1972 through December 2000, as constructed by Diebold and Li (2006).9

There are many possible parameterizations of the Markov switching model speci�ed by

equations (3) and (4). We estimate special cases that constrain some parameters to be the

same across regimes, along with the arbitrage-free version of the model. We also estimate the

single regime model, and the linearized version of the four factor single regime model. In all

cases, we evaluate the in-sample �t and out-of-sample forecasting performance of the models.

To simplify the exposition, we do not report the estimates of those models that are clearly

outperformed in terms of these criteria.10 Since all the reported models are non-nested, we

use information criteria for in-sample comparisons.11

Tables 1 and 2 show the estimation results of the di¤erent models. When the model

allows for switching, the parameters corresponding to regimes 0 and 1 are shown in the �rst

and second column, respectively. Model 1 in Table 1 corresponds to the baseline estimation

without switching; Model 2 only allows for switching in the parameter � and assumes diagonal

F and H matrices; Model 3 di¤ers form Model 2 in allowing also for switching in all the

parameters of the state equation. Model 4 in Table 2 imposes the non-arbitrage restrictions

to Model 3 but, as we explained above, the parameter � is not allowed to switch. Finally,

Model 5 is an extension of the Diebold and Li that allows for time-varying � as an additional

unobserved component.

9We use these particular data and sample period to compare our results to those of Diebold and Li.
10Christensen et al., (2011) note that it is common to �nd parameterizations of a yield curve model that

are not rejected in-sample but that have very poor out-of-sample forecasting performance. This problem of
over�tting is particularly important in non-linear models (e.g. Dri¢ ll et al. 2009). Given the large number of
possible parametrizations that are special cases of the general model, we only report the two best restricted
models. Results on the omitted models are available on request.

11 Information criteria have been found to be useful in selecting among di¤erent regime dependent models
(Psaradakis and Spagnolo, 2003 and 2006). Note, however, that comparing switching models with their single
regime counterpart is problematic due to the usual nuisance parameter problem.
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[Tables 1 and 2 about here]

Consider �rst the switching Models 2 and 3. In both cases, the estimated parameter �

is very di¤erent between regimes. The top panel in Figure 1 shows the yields for di¤erent

maturities and NBER recessions, presented in shaded areas. A simple inspection of the

�gure shows that recessions are preceded by (and begin in) periods where the yield curve is

relatively �at; afterwards, interest rates drop and the yield curve becomes steeper. The lower

panel displays the smoothed probability of regime 0 of Model 3, Pr(xt = 0jY T ; b�), where b� is
the estimated vector of parameters.12 From the separation of the regimes, it can be inferred

that the con�guration of parameters corresponding to regime 0 is associated with periods of

relatively �at yield curves. The estimated transition probabilities imply that the two regimes

are persistent. For example, in Model 3, the economy spends about 56 percent of the time in

regime 0 and 44 percent of the time in regime 1. Moreover, the expected number of months

that the economy stays in regime 0 (regime 1) conditional on being in regime 0 (regime 1) is

14.5 months (11.6 months). Clearly, these probabilities do not coincide with the NBER dating

of booms and recessions. However, the estimated probabilities of regime 1 tend to coincide

with periods labeled as �active monetary policy�by Bikbov and Chernov (2013).

[Figure 1 about here]

We plot the regime speci�c loadings on factors �2t and �3t corresponding to Model 3 in

the top panel of Figure 2; the lower panel of the �gure displays the factor loadings of the

linear Model 1. At short maturities, the loadings in regime 0 give comparatively more weight

to factor �3t and less weight to factor �2t relative to those in regime 1. The estimated �

in regime 0 implies that the loading on factor �3t is maximized at a maturity of 13 months

while the estimated � in regime 1 implies that the aforementioned loading is maximized at a

maturity of about 30 months. This means that changes in the factor �3t a¤ect mostly short

term yields in regime 0 but longer term yields in regime 1. On the other hand, the loadings

in regime 1 always give more weight to changes in the factor �2t than those in regime 0. To

12This panel also shows the smoothed probabilities for Model 4. Those results are commented below.
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understand this result, recall that the model separates periods with �at yield curves (regime

0) from periods with steeper yield curves (regime 1). Consistent with this observation, the

slope component �2t is more relevant the steeper is the yield curve. Finally, the estimated

volatilities of the state equation, measured by the diagonal elements of the matrix H, are

largest for the curvature factor �3t and lowest for the level factor �1t.

[Figure 2 about here]

In Model 3 we observe di¤erent dynamics of the unobserved factors in each regime, as

factor �2t is more persistent in regime 0 than in regime 1. In addition, the drifts components

�i are very di¤erent between regimes, although many of them are not statistically signi�cant.

The remaining estimates are similar to those in Model 1. In terms of �t, both the Akaike and

Schwarz information criteria (AIC and BIC) select Model 3 over Model 1 and Model 2.

In the single regime model, Diebold and Li (2006) interpret the factors �2t and �3t as

associated with the slope and curvature of the yield curve, de�ned, respectively, as Rt (120)�

Rt (3) and 2Rt (24)�Rt (3)�Rt (120) : Given the estimated values of �0 = 0:13 and �1 = 0:05,

the slope and curvature of the yield curve in regime 0 satisfy

R0t (120)�R0t (3) = �0:77�2t � 0:08�3t

2R0t (24)�R0t (3)�R0t (120) = �0:27�2t + 0:32�3t:

while, in regime 1, they are given by

R1t (120)�R1t (3) = �0:77�2t + 0:08�3t

2R1t (24)�R1t (3)�R1t (120) = 0:05�2t + 0:34�3t:

Note that, in regime 1, the slope and curvature of the yield curve are indeed mostly associated

with �2t and �3t, respectively. Yet, this association is less clear in regime 0. In particular,

while the slope is still mostly a¤ected by �2t, the curvature is almost equally sensitive to

variations in �2t and �3t. We computed the correlation between the estimated unobserved
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components and the level, slope, and curvature of the yield curve as in Diebold and Li (2006)

and found that the correlation between �1t and the level of yields, and between the �2t and

the slope is about 0:98 in both cases. On the other hand, and consistent with the observation

made above, the correlation between the factor �3t and the curvature is smaller (about 0:8).

In Table 3 and Figure 3 we show regime speci�c statistics computed by: i) dividing the

sample between booms and recessions according to NBER dates (top panel) and ii) separating

regimes using a dummy variable that equals 1 if Pr(xt = 0jY T ; b�) > 0:5 and zero otherwise

(bottom panel).13 As noted above, recessions start in periods with �at yield curves; in addi-

tion, Model 3 assigns a high probability to regime 0 (associated with �at yield curves) during

recessions. For this reason, we �nd the following similarities between the regimes separated

by the model and the stylized facts in booms and recessions displayed in Table 3. First,

average yields are higher in regime 0 than in regime 1; second, except at short maturities,

the average yield curve is �atter in regime 0 than in regime 1; third, the average yield curve

in regime 1 has a similar shape to that over the entire sample; fourth, the volatility of yields

decreases sharply as maturity increases in regime 0, but it is �atter in regime 1 (although also

decreasing with maturity); and �nally, yields are more persistent in regime 1 than in regime 0

(recall that yields are also more persistent in booms). This di¤erence in persistence, however,

is more clear at short maturities.

Model 4 in Table 2 reports the estimates of the arbitrage-free MS-DNS model described

in subsection 2.1.1.14 As explained above, the switching in the measurement equation comes

through a constant term that di¤ers across maturities. In this model, the separation of regimes

is very di¤erent from that in Model 3, and regime 1 is more closely related to NBER recessions

(Figure 1).15 Consistent with this observation, the expected time of staying in regime 1 is

much lower than in regime 0. In addition, the persistence of the three unobserved components

13 In computing these statistics, we only use sub-periods with six or more consecutive observations in a given
regime.

14Since the model has an a¢ ne structure, we transformed the yields from percentage to rates and then
reescaled the estimated parameters to make them comparable with the estimates from the other models.

15Notice that in model 4 the switching in the measurement equation arises because the constants Ai (�) are
allowed to switch� through shifts in the parameter  i, which in turn a¤ects the level of the yield curve under
the risk neutral:measurement. This parameter that governs the regime speci�c price of the risk appears to be
driven by booms and recessions.
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is higher in regime 0 than in regime 1.

Finally, Model 5 reports the estimates of the single regime model that includes �t as

an additional unobserved component (see equation (6)). For the diagonal parametrization,

Models 2 and 5 only di¤er in the process assumed for �. In both cases, � is an unobserved

component but in Model 2 � can take only two values, while in Model 5 it can take a continuum

of values. Interestingly, the estimates of the other parameters of the models are similar,

suggesting that Model 2 successfully captures the variability in �. Yet, as a result of the

additional �exibility in the process assumed for �, Model 5 outperforms all the other models

in terms of �t, as re�ected by the AIC and BIC criteria. This result is expected since, as

shown in Koopman et al., (2010) using cross-sectional regressions, the parameter � varies

substantially over time.

4.1 Out-of-sample forecasts

In this section we evaluate the accuracy of the out-of-sample forecasts of the empirical models

discussed earlier. In particular, we are interested in assessing the relative merits in terms of

forecasting ability of either including non-arbitrage restrictions, as in Model 4, or allowing for

time variation in the decay rate parameter �, as in Models 2, 3, and 5. In Models 2 and 3, �

can take two possible values according to the Markov switching structure, while in Model 5

� can take a continuum of values as an additional unobserved component in a single regime

model. In summary, we found that the relative merits of the di¤erent model depend not only

on the forecast horizon, but also on the maturity that is forecasted.

We compare the forecasting accuracy of Models 2 through 5 to that of the linear Model

1. We use Model 1 as the baseline for comparisons because: i) this model outperforms other

standard forecasting models (random walks, VARs, etc.) and ii) we use the same data that

Diebold and Li (2006) use in their forecasting exercises. This allows us to focus on the

relative merits of the di¤erent models for a given sample of data. We compare the out-of

sample forecasts based on a series of recursive forecasts beginning in 1994:1 and extending

through 2000:12 (84 sample points), for all the available maturities, and for forecast horizons

of h=1, 3, 6, and 12 months ahead.
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To compare the forecast accuracy of the models, we compute the mean squared errors

(MSE) of the forecasts, including the proportion of times that each model achieves the smallest

squared forecast error over the 84 sample points. We also test for equal predictive accuracy

using a modi�ed version of the Diebold and Mariano (1995) test, proposed by Harvey et al.,

(1997).16 Tables 4 to 7 report the results of the forecasting exercise. A �rst inspection of the

tables shows that the linear Model 1 is generally outperformed by the nonlinear alternatives,

with the only exception at long maturities for the 12 months ahead forecasts, implying that

all the extensions considered in this paper are valuable in this respect.

The one month ahead forecasts, displayed in Table 4 show that Models 4 and 5 have the

smallest MSEs for all but one maturity. This �nding suggests that including non-arbitrage

restrictions and allowing for time variation in the decay rate parameter � is important for

short horizon predictability. On the right panel of the table we report the proportion of

times that each model achieves the smallest MSE over the 84 forecast periods calculated for

each individual maturity. Contrary to the previous �nding, Model 5 is outperformed by the

alternative speci�cations most of the times. In particular, Model 5 outperforms the other

models by this criterion for only 2 of the 17 maturities. In contrast, Models 2 and 3, that

have a relativelly high MSE, achieve the smallest squared forecast errors most of the times.

This is probably due to the fact that in some sub-periods Models 2 and 3 perform very poorly,

probably as a results of a misclassi�cation of states.

When we look at longer forecasting horizons, results change considerably. For example,

for the 3 months ahead forecasts, Models 2 and 4 achieve the smallest MSE while Model 5

performs rather poorly. This �nding suggests that the gains in terms of �t and short horizon

predictability, driven by the greater �exibility in � associated with Model 5, are lost for longer

forecasting horizons. The good forecasting performance of Model 2 suggests that allowing for

changes in � is important for out-of-sample forecasting, but allowing for too much �exibility

in �; as in Model 5, could result in over�tting of the data. In other words, a parsimonious
16The purpose of the modi�cation is to overcome the problem of over-sized of the original test in small and

moderate samples (particularly acute for longer forecast horizons). The modi�ed statistic is S� = f[n + 1 �
2h+n�1h(h�1)]=ng1=2S, where n is the number of forecasts, h the forecast horizon and S the original Diebold
and Mariano statistic. We compute the standard error of the di¤erences in forecasts using the Newey-West
estimator with the automatic lag-length selection of Andrews (1991).
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two state Markov switching parameterization seems to be more successful for this data set.

The previous pattern is accentuated when we consider the 6 months ahead forecast horizon.

We �nd that Model 2 achieves the smallest MSE for 15 maturities while Model 4 does it

only for 2 maturities. This result suggests that imposing the non-arbitrage restrictions is

relatively more important for the shortest forecast horizons. For example, when we consider

the 12 months ahead forecasts, Model 4 is always outperformed. For this horizon, Models

2 and 3 achieve the smallest MSE for the shortest maturities, while Model 1 does it for the

longer maturities. On the other hand, while Model 3 does not have the smallest MSE across

maturities, it achieves the smallest squared errors in the majority of the forecast dates and

for most maturities.

We also use tests of equal forecast accuracy that are designed to examine whether the

MSE of two alternative non-nested models are signi�cantly di¤erent from each other. The

comparison is made between the linear Model 1 and the nonlinear alternatives using the

modi�ed Diebold and Mariano (1995) statistic proposed by Harvey et al., (1997). In line with

the previous �ndings based on the MSE criterion, Models 4 and 5 outperform Model 1 for

1 month ahead forecasts, in particular for short and medium maturities. For the 3 months

ahead forecasts, while Models 4 and 5 are signi�cantly better than Model 1 at short maturities,

Model 2 is signi�cantly better than Model 1 for maturities between 9 and 21 months. The

pattern is similar for the 6 months ahead forecast horizon, with the di¤erence that Model 2 is

signi�cantly better than Model 1 for all maturities but one between 3 and 30 months. Finally,

for the 12 months horizon, the nonlinear models are rarely signi�cantly better than Model 1.

Moreover, for maturities longer than 5 years, the switching model that imposes non-arbitrage

restrictions (Model 4) forecasts signi�cantly worse than Model 1.

Summarizing, we �nd that Model 5, with the best in-sample �t, has only good forecasting

performance for the shortest forecast horizons. The ability of the model to match in-sample

swings in the decay rate parameter �t leads to the usual problem of over�tting, re�ected

in the poor forecasting performance of the model at longer horizons. In addition, we �nd

that imposing non-arbitrage restrictions in the Markov switching model is bene�cial mostly
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for short forecast horizons. On the other hand, the Markov switching models with state de-

pendent decay parameter � have a relatively good forecasting performance for medium and

long horizons. Overall, these results show that several nonlinear models have better forecast-

ing performance than the single regime three factor model. These �ndings are particularly

noteworthy because one of the major weaknesses of many existing nonlinear models is their

relatively poor out-of-sample performance.

5 Conclusions

In this paper we propose several Markov switching extensions of the Diebold and Li (2006)

dynamic Nelson and Siegel model and evaluate their merits relative to other extensions pro-

posed in the literature. The extensions are motivated by the observation that the shape of the

yield curve seems to change over time in ways that may be captured by a Markov switching

framework. For example, the statistical properties of the yield curve depend on particular

partitions of the sample, such as booms and recessions, or active and passive monetary policy

regimes. Along this line, we document that the yield curve is substantially less persistent and

�atter during recessions than in booms for the sample under consideration. In addition, we

also observe that the yield curve is relatively �at at the beginning of recessions, interest rates

drop afterwards, and, as the economy recovers, yields spread out and the yield curve becomes

steeper.

We consider models that impose non-arbitrage restrictions and models that allow for time

variation in the exponential decay rate parameter � that governs the shape of the yield curve.

We also derive a discrete-time version of the non-arbitrage restrictions associated with the

Markov switching model. We show that, to be consistent with the dynamic Nelson and Siegel

framework, the parameterization of the model cannot allow for switching in the decay rate

parameter. However, the associated measurement equations include switching in a constant

speci�c for each maturity. The proposed Markov switching models, with and without non-

arbitrage restrictions, are parsimonious and relatively easy to estimate. This simplicity is

accomplished by an approximate non-linear �lter that collapses a growing mixture of densities
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to a single density, dramatically reducing the dimensionality of the estimation problem.

We compare the Markov switching models with the standard three-factor dynamic Nelson

and Siegel model and with another single regime model that treats the decay rate parameter as

a continuously time-varying unobserved component. We assess the importance, in terms of �t

and forecasting performance, of each of these extensions: namely, the importance of allowing

for changes in the decay rate parameter � and of imposing non-arbitrage restrictions.

The merits of the di¤erent models are assessed in terms of their forecasting performance.

The single-regime model, that treats � as a continuously time-varying factor, performs very

well in terms of �t and forecasting performance only at the shortest forecasting horizon. Yet,

the substantial gains of this model in terms of �t are obtained against losses in mid and long

horizons forecasts. Within the class of Markov switching models, imposing non-arbitrage

restrictions is important only at short and medium horizons. On the other hand, models

with switching in the decay rate parameter have a relatively good forecasting performance at

medium and long horizon. Overall the paper shows that several models have better forecast-

ing performance than the single regime dynamic Nelson and Siegel model. Which model is

preferred, however, depends on the particular forecasting horizon.
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Appendix: MS-DNS model with no-arbitrage restrictions

We consider an a¢ ne arbitrage-free model in discrete time following the set up in Ang and
Piazessi (2003). The dynamics of the state variables Zt follows, under the physical measure,
the process

Zt = �xt + FxtZt�1 + �xt

where xt 2 f0; 1g is the Markov regime and �xt � N (0;Hxt). Payo¤s in period t+ 1 are dis-

counted using the following pricing kernelMt+1 (xt+1) = exp
�
�rt � 1

2�
0
xt+1�xt+1 � �

0
xt+1�xt+1

�
,

where �xt = �
0
xt+�

1
xtZt are the time-varying market price of risk associated with the sources

of uncertainty �xt+1 , rt = �xtZt is the short rate equation that is assumed to be a function of
Zt, and �xt is a state-dependent 1� 3 vector to be de�ned.

The price of a zero-coupon bond at time t with maturity � in regime xt = i; denoted by
P �t (i), can be computed recursively according to

P �t (i) =
1X
j=0

pijEt
�
Mt+1(j)P

��1
t+1 (j)ji

�
:

Using a guess and verify strategy, one can show that bond prices are given by P �t (i) =
exp (Ai(�) +B

0
i(�)Zt) ; where, for i 6= j, the coe¢ cients Ai(�) and Bi (�) follow the di¤erence

equations

Ai(�) = pii(Ai(� � 1) +
B0i (� � 1)HiBi (� � 1)

2
+B0i (� � 1) (�i �Hi�0i ))

+ pij(Aj(� � 1) +
B0j (� � 1)HjBj (� � 1)

2
+B0j (� � 1) (�j �Hj�0j ))

Bi (�) = pii(��0i + (Fi �Hi�1i )0Bi (� � 1)) + pij(��0i + (Fj �Hj�1j )0Bj (� � 1));

with initial conditions Ai (0) = 0 and Bi (0) = [0; 0; 0]0.
We construct an arbitrage-free MS-DNS model by extending Niu and Zeng (2012) to a

Markov switching framework. As argued below, the arbitrage-free MS-DNS model can only
be derived if the matrix Bi (�) is regime independent, Bi (�) = B (�).

Under the risk-neutral measure and imposing Bi (�) = B (�) ; �i = �, and �i = � we
obtain

Ai(�) = pii(Ai(� � 1) +
B0 (� � 1)HiB (� � 1)

2
+B0 (� � 1) �i) (A1)

+ pij(Aj(� � 1) +
B0 (� � 1)HjB (� � 1)

2
+B0 (� � 1) �j)

B (�) = ��0 +�0B (� � 1)); (A2)

where �i = �i�Hi�0i and � = Fi�Hi�1i . Under this assumption, we can �nd the underlying
parameters of equations (A1) and (A2) such that the a¢ ne model has the same factor loadings
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of the Nelson and Siegel model. Clearly, the underlying parameters should be a function of
�.

By substitution, it is easy to show that the yields for the arbitrage-free MS-DNS model
can be expressed as

�Ai(�) +B(�)
0Zt

�
= �Ai (�)

�
+ �1t + �2t

1� e���
��

+ �3t

�
1� e���
��

� e���
�
;

with Zt = [�1t; �2t; �3t]
0, rt = Ri(1) = �Zt, � = [1; 1�e

��

� ;
�
1�e��
� � e��

�
] = �B (1)0, B (�)0 =

[�� ;�1�e���
� ;�

�
1�e���

� � �e���
�
], and

� =

24 1 0 0
0 e�� 0
0 �e�� e��

35 :17
As in Christensen et al., (2011), the arbitrage-free MS-DNS model augments the Nelson
and Siegel model with an additional state-dependent term �Ai (�) =� . Equations (A1) and
(A2) imply that Ai (�) cannot be zero which implies that the MS-DNS is incompatible with
the arbitrage-free conditions. Moreover, the model does not impose any restriction on the
parameters of the physical measure. In particular, given the estimated values for Fi and �i,
we can recover the price of risk parameters �0i and �

1
i by solving �

1
i = H�1

i (Fi � �) and
�0i = H�1

i (�i � �i). To identify the model, we follow Dai and Singleton (2000) in setting the
constant of the a¢ ne short rate equation equal to zero and letting �i = [ i; 0; 0]

0 for i = 0; 1, to
be estimated as free parameters along with the other parameters of the model. The arbitrage-
free MS-DNS model has two additional parameters compared with the MS-DNS.

Derivation of equations (A1) and (A2).
The price of a zero-coupon bond with maturity � in regime xt = i can be computed

recursively from

P �t (i) =

1X
j=0

pijEt
�
Mt+1(j)P

��1
t+1 (j)ji

�
:

Then, under the informational assumptions of Banzal and Zhou (2002),

Et
�
Mt+1(0)P

��1
t+1 (0)ji

�
= Et

h
e
(��iZt� 1

2
�0xt+1=0

�xt+1=0��
0
xt+1=0

�xt+1=0)eA0(��1)+B0(��1)
0Zt+1

i
Et
�
Mt+1(1)P

��1
t+1 (1)ji

�
= Et

h
e
(��iZt� 1

2
�0xt+1=1

�xt+1=1��
0
xt+1=1

�xt+1=1)eA1(��1)+B1(��1)
0Zt+1

i
which allows us to express the pricing equation conditional on xt = i as

eAi(�)+B
0
i(�)Zt = piie

(��iZt� 1
2
�0xt+1=i

�xt+1=i+Ai(��1))Et
h
e
��0xt+1=i�xt+1+Bi(��1)

0Zt+1
i

+pije
(��iZt� 1

2
�0xt+1=j

�xt+1=j+Aj(��1))Et
h
e
��0xt+1=j�xt+1+Bj(��1)

0Zt+1
i

17To prove that B cannot be state contingent, we may start by assuming that the matrix B is state
dependent. It then follows that the matrices �i would depend on � , which is inconsistent with the arbitrage-
free model since the price of risk �i would also depend on � . More details are available upon request.
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or

eAi(�)+B
0
i(�)Zt = piie

(��iZt+Ai(��1))eBi(��1)
0(�i+FiZt)e

B0i(��1)HiBi(��1)
2 e

��0xt+1=iHiBi(��1)

+pije
(��iZt+Aj(��1))eBj(��1)

0(�j+FjZt)e
B0j(��1)HjBj(��1)

2 e
��0xt+1=jHjBj(��1)

Using the approximation ex ' 1 + x, imposing Bi(�) = B(�), �i = �, and substituting
�xt=i = �

0
i + �

1
iZt it follows that

Ai(�) = pii(Ai(� � 1) +
B0 (� � 1)HiB (� � 1)

2
+B0 (� � 1) (�i �Hi�0i ))

+pij(Aj(� � 1) +
B0 (� � 1)HjB (� � 1)

2
+B0 (� � 1) (�j �Hj�0j ));

B (�) = pii(��0 + (Fi �Hi�1i )0B (� � 1)) + pij(��0 + (Fj �Hj�1j )0B (� � 1)):

Using that �i = �i �Hi�
0
i and � = Fi �Hi�

1
i we obtain the expressions in equations (A1)

and (A2).

26



Table 1: Yield Estimation Results

Model 1 Model 2 Model 3
� 0.0777 0.1253 0.0473 0.1274 0.0530

(0.0021) (0.0030) (0.0015) (0.0035) (0.0019)
�1 0.0675 0.0855 0.0462 0.1225

(0.0691) (0.0697) (0.0839) (0.1416)
�2 0.1887 -0.0794 0.1102 -0.6930

(0.1386) (0.0423) (0.0404) (0.0870)
�3 -0.2220 -0.0310 0.0165 -0.0895

(0.2015) (0.0464) (0.0745) (0.0817)
F (1; 1) 0.9957 0.9902 0.9950 0.9840

(0.0177) (0.0080) (0.0097) (0.0161)
F (1; 2) 0.0285

(0.0211)
F (1; 3) -0.0222

(0.0232)
F (2; 1) -0.0306

(0.0260)
F (2; 2) 0.9389 0.9539 0.9958 0.7776

(0.0309) (0.0162) (0.0067) (0.0276)
F (2; 3) 0.0393

(0.0084)
F (3; 1) 0.0242

(0.0113)
F (3; 2) 0.0229

(0.0305)
F (3; 3) 0.8438 0.7482 0.8276 0.7500

(0.0186) (0.0342) (0.0513) (0.0519)
H(1; 1) 0.0947 0.1010 0.1096

(0.0084) (0.0087) (0.0093)
H(1; 2) -0.0140

(0.0113)
H(1; 3) 0.0438

(0.0186)
H(2; 1) -0.0140

(0.0113)
H(2; 2) 0.3822 0.3808 0.3390

(0.0305) (0.0304) (0.0260)
H(2; 3) 0.0094

(0.0344)
H(3; 1) 0.0438

(0.0186)
H(3; 2) 0.0094

(0.0344)
H(3; 3) 0.8007 1.0119 0.9669

(0.0813) (0.0950) (0.0933)
p00 0.9578 0.9311

(0.0097) (0.0171)
p11 0.9003 0.9137

(0.0246) (0.0223)
Log likelihood 3173.5 3311.66 3343.81
AIC -6303.0 -6597.3 -6649.6
BIC -6218.3 -6547.2 -6576.4



Table 2: Yield Estimation Results (Continuation)

Model 4 Model 5
� 0.0888

(0.0126)
�1 0.0117 1.0345 -0.1700

(0.0643) (0.3105) (0.0547)
�2 0.0851 -0.7380 0.0754

(0.0399) (0.1603) (0.0707)
�3 0.1476 1.0202 0.0092

(0.0902) (0.3001) (0.0066)
�� -0.1099

(0.0536)
F (1; 1) 0.99 0.8463 0.9908

(0.0001) (0.0313) (0.0080)
F (2; 2) 0.99 0.4796 0.9758

(0.0158) (0.0649) (0.0115)
F (3; 3) 0.8921 0.5317 0.8455

(0.0390) (0.0792) (0.0313)
F (4; 4) 0.9339

(0.0212)
H(1; 1) 0.09 0.1027

( 0.08) (0.0090)
H(2; 2) 0.23 0.3955

(0.13) (0.0333)
H(3; 3) 0.86 0.8993

(0.17) (0.0891)
H(4; 4) 0.4257

(0.3978)
�1 0.9488

(0.4121)
�2 0.4516

(0.5262)
p00 0.9488

(0.4121)
p11 0.4516

(0.5262)
Log likelihood 3467.36 3620.35
AIC -6904.7 -7210.7
BIC -6846.9 -7152.9



Table 3: Descriptive statistics of level, slope, and curvature

A. Data All sample Recessions Booms
Mean Std. dev. �̂ (1) Mean Std. dev. �̂ (1) Mean Std. dev. �̂ (1)

Level 8.14 2.17 0.98 9.91 0.71 0.59 7.87 0.88 0.81
Slope 1.29 1.46 0.93 0.66 1.33 0.49 1.39 1.31 0.83
Curvature 0.12 0.72 0.79 0.42 0.76 0.33 0.08 0.60 0.62

B. Model 3 Regime 0 Regime 1
Mean Std. dev. �̂ (1) Mean Std. dev. �̂ (1)

Level 8.65 0.61 0.63 7.79 0.57 0.65
Slope 0.74 0.81 0.64 1.99 0.49 0.60
Curvature 0.33 0.51 0.49 -0.01 0.34 0.46
Note: �̂ (1) denotes the �rst order sample autocorrelation.

Table 4: Forecasting 1 month ahead

MSE: 1 month ahead MSE percentage of times
� M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
3 0.0396 0.0282x 0.0408 0.0284x 0.0270� 29.8 27.4 11.9 15.5 15.5
6 0.0397 0.0341 0.0431 0.0319� 0.0344x 25.0 31.0 20.2 13.1 10.7
9 0.0487 0.0410� 0.0506 0.0440 0.0456� 6.0 38.1 26.2 21.4 8.3
12 0.0534 0.0506 0.0631� 0.0468 0.0495 9.5 31.0 19.0 31.0 9.5
15 0.0617 0.0617 0.0742� 0.0523x 0.0558� 8.3 22.6 20.2 39.3 9.5
18 0.0658 0.0644 0.0762� 0.0575x 0.0601� 10.7 21.4 26.2 34.5 7.1
21 0.0720 0.0692 0.0803. 0.0639� 0.0662� 15.5 20.2 27.4 33.3 3.6
24 0.0772 0.0731� 0.0820 0.0708 0.0722 13.1 25.0 29.8 29.8 2.4
30 0.0746 0.0719 0.0792 0.0681� 0.0698x 16.7 28.6 32.1 22.6 0.0
36 0.0734 0.0719 0.0764 0.0670x 0.0688x 13.1 27.4 31.0 20.2 8.3
48 0.0755 0.0745 0.0773 0.0694x 0.0709x 13.1 16.7 34.5 25.0 10.7
60 0.0798 0.0784 0.0783 0.0746� 0.0746x 21.4 14.3 29.8 25.0 9.5
72 0.0720 0.0716 0.0723 0.0709 0.0692 19.0 14.3 25.0 34.5 7.1
84 0.0752 0.0739 0.0751 0.0746 0.0720 16.7 16.7 19.0 44.0 3.6
96 0.0702 0.0686 0.0705 0.0684 0.0654 17.9 16.7 16.7 41.7 7.1
108 0.0714 0.0694 0.0712 0.0707 0.0671 22.6 15.5 19.0 17.9 25.0
120 0.0720 0.0715 0.0727 0.0728 0.0740 28.6 14.3 16.7 8.3 32.1

Note: �, x and � are 10, 5 and 1% signi�cance levels for the one sided modi�ed Diebold and Mariano test,

respectively. The null hypothesis is that the non-linear model outperforms the linear one. . and � are 10 and
5% signi�cance levels for the linear model outperforming the non-linear one, respectively.
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Table 5: Forecasting 3 months ahead

MSE: 3 months ahead MSE percentage of times
� M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
3 0.1428 0.0932 0.1547 0.0872x 0.0943x 20.2 34.5 15.5 13.1 16.7
6 0.1726 0.1345 0.1861 0.1294� 0.1428� 21.4 31.0 25.0 15.5 7.1
9 0.2053 0.1607x 0.2131 0.1687x 0.1788� 10.7 29.8 23.8 27.4 8.3
12 0.2185 0.1909 0.2498 0.1838� 0.1943� 9.5 27.4 26.2 32.1 4.8
15 0.2430 0.2230 0.2830 0.2069 0.2173 11.9 20.2 27.4 34.5 6.0
18 0.2616 0.2352� 0.2899 0.2261 0.2339 15.5 23.8 23.8 33.3 3.6
21 0.2808 0.2488x 0.2986 0.2456 0.2514 15.5 23.8 21.4 34.5 4.8
24 0.2948 0.2585 0.3019 0.2636 0.2660 16.7 22.6 22.6 34.5 3.6
30 0.2873 0.2569 0.2919 0.2583 0.2604 17.9 22.6 22.6 34.5 2.4
36 0.2848 0.2592 0.2857 0.2584 0.2603 20.2 21.4 25.0 32.1 1.2
48 0.2810 0.2606 0.2790 0.2586 0.2593 23.8 22.6 20.2 31.0 2.4
60 0.2877 0.2697 0.2800 0.2755 0.2698 25.0 21.4 23.8 25.0 4.8
72 0.2623 0.2496 0.2593 0.2621 0.2511 27.4 25.0 13.1 28.6 6.0
84 0.2655 0.2499 0.2613 0.2714 0.2554 23.8 28.6 11.9 31.0 4.8
96 0.2446 0.2283 0.2393 0.2513 0.2340 25.0 25.0 13.1 35.7 1.2
108 0.2459 0.2276 0.2385 0.2543 0.2380 25.0 22.6 14.3 26.2 11.9
120 0.2442 0.2288 0.2386 0.2524 0.2464 31.0 21.4 13.1 11.9 22.6

Note: see note in Table 4.

Table 6: Forecasting 6 months ahead

MSE: 6 months ahead MSE percentage of times
� M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
3 0.3803 0.2138� 0.3253 0.2092� 0.2526x 19.0 36.9 16.7 20.2 7.1
6 0.4159 0.2827� 0.3727 0.2880� 0.3320� 17.9 38.1 19.0 17.9 7.1
9 0.4518 0.3184x 0.4027 0.3494x 0.3822 8.3 32.1 22.6 32.1 4.8
12 0.4675 0.3740� 0.4668 0.3855� 0.4122� 14.3 32.1 20.2 28.6 4.8
15 0.4886 0.4139 0.5080 0.4139 0.4371 15.5 29.8 21.4 28.6 4.8
18 0.5207 0.4381� 0.5212 0.4523 0.4677 14.3 28.6 22.6 27.4 7.1
21 0.5521 0.4637� 0.5383 0.4901 0.4983 15.5 28.6 22.6 27.4 6.0
24 0.5790 0.4860� 0.5498 0.5266 0.5264 16.7 26.2 23.8 27.4 6.0
30 0.5695 0.4912� 0.5412 0.5263 0.5224 20.2 27.4 23.8 27.4 1.2
36 0.5710 0.5052 0.5434 0.5381 0.5310 21.4 27.4 23.8 26.2 1.2
48 0.5715 0.5224 0.5481 0.5558 0.5428 25.0 28.6 20.2 23.8 2.4
60 0.6022 0.5633 0.5806 0.6152 0.5878 28.6 23.8 20.2 23.8 3.6
72 0.5561 0.5302 0.5458 0.5935 0.5556 31.0 22.6 17.9 26.2 2.4
84 0.5579 0.5333 0.5514 0.6132 0.5645 32.1 25.0 14.3 28.6 0.0
96 0.5242 0.4981 0.5166 0.5832 0.5322 31.0 25.0 15.5 26.2 2.4
108 0.5255 0.4938 0.5137 0.5846 0.5380 33.3 26.2 13.1 22.6 4.8
120 0.5379 0.5070 0.5269 0.5905 0.5627 36.9 23.8 16.7 11.9 10.7

Note: see note in Table 4.
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Table 7: Forecasting 12 months ahead

MSE: 12 months ahead MSE percentage of times
� M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
3 1.0213 0.6069 0.7638 0.6789� 0.7989� 25.0 19.0 40.5 10.7 4.8
6 0.9995 0.7087 0.8321 0.8052� 0.8713 26.2 17.8 42.9 11.9 1.2
9 0.9976 0.7603 0.8592 0.8943 0.9129 16.7 20.2 42.9 17.9 2.4
12 0.9502 0.8129 0.9058 0.9166 0.9074 15.5 22.6 39.3 20.2 2.4
15 0.9344 0.8601 0.9486 0.9395 0.9175 17.9 20.2 39.3 19.0 3.6
18 0.9647 0.9018 0.9688 0.9961 0.9573 20.2 22.6 35.7 19.0 2.4
21 0.9950 0.9389 0.9866 1.0444 0.9936 20.2 23.8 38.1 14.3 3.6
24 1.0338 0.9802 1.0078 1.1017 1.0387 19.0 23.8 38.1 15.5 3.6
30 1.0244 0.9993 1.0033 1.1070 1.0441 19.0 22.6 38.1 14.3 6.0
36 1.0305 1.0254 1.0130 1.1269 1.0646 23.8 19.0 36.9 14.3 6.0
48 1.0320 1.0524 1.0257 1.1566 1.0911 23.8 20.2 38.1 15.5 2.4
60 1.0985 1.1362 1.1005 1.2788� 1.1886 29.8 20.2 33.3 13.1 3.6
72 1.0296 1.0842 1.0492 1.2512� 1.1414 29.8 25.0 27.4 14.3 3.6
84 1.0123 1.0678 1.0400 1.2687� 1.1382. 33.3 27.4 22.6 15.5 1.2
96 0.9703 1.0137 0.9918 1.2287� 1.0937 38.1 27.4 17.9 11.9 4.8
108 0.9811 1.0087 0.9930 1.2281� 1.1049 38.1 27.4 17.9 10.7 6.0
120 1.0405 1.0613 1.0516 1.2599� 1.1764 38.1 28.6 20.2 8.3 4.8

Note: see note in Table 4.
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Figure 1: Yields, NBER recessions, and smoothed probability of regime 0
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Figure 2: Factor loadings
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Figure 3: Stylized facts in booms and recessions and in baseline model
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