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Abstract

Observed Engel curves are non-monotonic, hence consumption goods may be regarded

as luxuries only for ranges of consumer income. This paper rationalises this evidence by

postulating that quality of consumption governs the distribution of spending across goods.

We argue that quality upgrading as income increases not only implies that virtually every

variety of each good eventually becomes inferior. But also amends the notion of luxury good:

a change in income, producing di¤erent quality variations across goods, causes heterogeneous

spending responses. The resulting Engel curves shapes depend on the rise in quality of each

good relative to the average consumption quality improvement. An illustrative simulation

shows that the model captures the essential features of the observed Engel curves.

Keywords: Engel Curves, Nonhomothetic Preferences, Quality Ladders

JEL Classi�cation: D11

1 Introduction

Of all the empirical regularities observed in economic data, Engel�s [(1895)] Law is

probably the best established. (Houthakker, 1987, p.142)

An Engel curve is a function that describes the relationship between demand for a good

and consumer income, holding prices �xed. The curve illustrates the change in the consumption

bundle composition occurring when consumers, as their income rises, devote a smaller fraction of

resources to less desired goods (necessities), and a larger fraction to more desired ones (luxuries).

Empirical evidence based on observed Engel curves suggests that no good should be intrin-

sically considered a luxury or a necessity. Several studies document observed Engel curve non-

monotonicities, including quadratic- or S-shapes, or non-monotonicities of higher order. (For a
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Figure 1. Observed Engel curves.

Source: U.S. Bureau of Labor Statistics, year 2005.

review of this literature, see Lewbel, 2006; �gure 1 exempli�es the Engel curves for a sample of

six large aggregates in the U.S. for the year 2005, across di¤erent income clusters.) This evidence

is suggestive of irregular patterns, which imply that goods should be regarded as luxury only

for ranges of income. Notwithstanding, little e¤ort in the economic literature is devoted to

investigating the determinants for the complex relationship between consumer spending and

consumer income.1

This paper aims to �ll this gap in the literature. Section 2 constructs a model where quality

levels set the di¤erent goods�relative appeal to consumers. In particular, we relate the evolution

of consumer demand as income rises at an intra-industry level (e.g., substitution of canned

vegetables and salt-cured meat with fresh produce; of B&W TVs with HD �at screens) to that

at an inter-industry level (e.g., the demand shift from produce to visual entertainment), using

the concept of �quality upgrading�(Grossman and Helpman, 1991) as the common factor that

determines consumer spending reallocations. For a given income level, each good is consumed

in a particular quality, and the distribution of consumer spending across goods mirrors that of

the consumed qualities. A rise in income implies, at an intra-industry level, a process of quality

upgrading of each good. Depending on sectoral production characteristics, quality upgrading

occurs at di¤erent pace across goods. At an inter-industry level, therefore, this mechanism
1An important exception is the notion of hierarchical preferences, postulating a priority ordering over the

set of consumption goods (e.g., Matsuyama, 2002; Foellmi and Zweimuller, 2006). This representation of con-
sumers demand implies that every good is a luxury at su¢ ciently low-income levels, while gradually becoming
a necessity as income rises. While S-shaped Engel curves can be justi�ed by this assumption, more complex
non-monotonicities cannot.
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implies adjustments in the expenditure shares in response to the modi�ed goods�relative appeal.

The model is consistent with the complex irregularities in the shapes of the observed Engel

curves. While a direct testing is impossible due to the lack of relevant data, to illustrate this

property I present in section 3 a simulation of the model.2 Parameterisation is kept as simple as

possible. First, I introduce good-speci�c upper-bounds to quality, to represent the technological

state-of-the-art in the supply-side of the economy. Second, I let the cost of quality upgrad-

ing di¤er across goods. Even using this simple parameterisation, the simulation captures the

fundamental patterns of the observed Engel curves.

2 The Model

Goods are organised along two dimensions: horizontal and vertical. (Figure 2 illustrates the

commodity space.) The horizontal dimension (x-axis) designates the type of good, indexed by

v 2 V � [0; 1]. The vertical dimension (y-axis) refers to the quality of the good, indicated by

q 2 Q � R+.3 The commodity space is then given by the set V�Q = [0; 1]� [0;1), with each
commodity identi�ed by the pair (v; q) 2 V�Q.

The economy is inhabited by a continuum of individuals with identical preferences. I assume

that the representative individual consumes strictly positive amounts of only one quality per

good. Denote this quality by qv, and the consumed quantity by xv 2 R+. The utility function
then reads:

U = lnC =

Z
V
ln cvdv;

with cv =

(
xv if xv < 1;

(xv)
qv if xv � 1;

(1)

where C is an index of total consumption, and cv represents the quality-adjusted consumption

index for good v.

Utility (1) formalises the notions that quality is a desirable feature and turns increasingly

desirable as the consumed quantity rises. Quality magni�es utility of (quantitative) consump-

tion only when xv > 1, capturing the idea that individuals �rst seek to satisfy their basic

consumption needs, and only after these are met do they pay attention to the quality dimension

of consumption.

The representative individual maximises utility (1) facing prices fpvgv2V and the limit on

2The e¤ects of quality on household decisions are empirically investigated mainly in the literature of inter-
national trade, where custom data at the product level permit constructing proxies for quality based on import
prices (e.g., Jaimovich and Merella, 2012). The lack of such �gures for domestic trade disallows analogous proxies
for aggregate consumption.

3Along with the proofs of all formal results, the appendix contains a de�nition of quality based on the theory
of characteristics (Lancaster, 1966).
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Figure 2. Quality upgrading.

Dashed and solid circles represent consumed qualities before and after wealth

variation, respectively. Arrow sizes indicate the di¤erent intensities in quality

upgrading across some representative goods.

spending S 2 R++. The budget constraint is:Z
V
pvxvdv = S: (2)

I de�ne �v � pvxv=S as the demand intensity for good v, which measures the fractions of

spending devoted to that good. In the optimum, the budget constraint (2) naturally binds, thus

demand intensities sum up to one across goods (i.e.,
R
V �vdv = 1).

Regarding prices, I assume that higher qualities are more expensive, and that subsequent

quality improvements become increasingly costly. Furthermore, to ease tractability, I assume

that the price elasticity of quality upgrading, denoted by �v, is constant along the quality space,

although it may take di¤erent values across goods. Formally, price and quality are related by

the function:4

pv = (qv)
�v : (3)

Before solving the consumer problem, it proves convenient to state the following preliminary

result.
4Notice from (3) that the price elasticity of quality upgrading, formally (dpv=dqv) (qv=pv), equals �v since

dpv=dqv = �vq
�v�1
v and qv=pv = q

1��v
v .
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Lemma 1 xv � 1, 8v 2 V and 8S 2 R++.

Consumed quantities are greater than one, regardless the amount of spending. Hence, in this

speci�cation of the model, individuals pay attention to the quality dimension of consumption at

any level of income.

Problem 1 The representative individual solves:

max
fqv ;xvgv2V

R
V ln cvdv;

subject to:
R
V pvxvdv = S;

cv =

(
xv if xv < 1;

(xv)
qv if xv � 1;

pv = (qv)
�v ; qv; xv � 0:

Solution The necessary and su¢ cient conditions for a maximum are:

ln [�vS= (qv)
�v ] = �v; (4)

qv=�v = �; (5)Z
V
�vdv = 1; (6)

where � is a Lagrange multiplier associated to the budget constraint.

Consumer choice can be thought of as a two-stage decision. First, given the qualities distri-

bution across goods, the individual chooses the fraction of spending devoted to consumption of

each good. Formally:

�v =
qv
Q
; 8v 2 V; (7)

where Q �
R
V qzdz is an aggregate index measuring average consumption quality. The fraction of

income spent on one good is thus determined by its quality relative to the average consumption

quality. Second, for a given fraction of spending devoted to consumption of good v, the individual

picks quality qv to solve the �trade-o¤�between quality and quantity by maximising cv.

Proposition 1 Given prices fpvgv2V and income S, the consumer chooses, 8v 2 V:

xv = e
�v > 1; (8)

qv = e
� �v
�v�1 (S=Q)

1
�v�1 > 0; (9)

�v = (eQ)
� �v
�v�1 (S)

1
�v�1 > 0: (10)
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Consumed quantities di¤er across goods: the higher the price elasticity of quality upgrading,

the larger the quantity consumed. This quantitative compensation for a higher cost of quality

upgrading re�ects the �trade-o¤�between quality and quantity of consumption.

Note from (8) that a change in S has no e¤ect on the consumed quantities. Hence, the analysis

of the e¤ects of a variation in total spending is limited to qualities and demand intensities.

Lemma 2 Let v0; v00 2 V be two goods such that �v0 < �v00. Then:

dqv
dS

=
qv

�v � 1
Q

S

�Z
V

�zqz
�z � 1

dz

��1
> 0; 8v 2 V: (11)

An increase in spending implies a rise in the quality consumed of each good. That is, the

model endogenously generates a process of quality upgrading. The rationale is that consumers

are mostly concerned with the quantitative aspects of consumption when their income is low,

while they pay increasing attention to qualitative aspects as their income rises.

Proposition 2 Denote ~� �
R
V �zqz= (�z � 1) dz=

R
V qz= (�z � 1) dz. Then:

d�v
dS

=
1

S

�v
�v � 1

~� � �v
~�

; 8v 2 V; (12)

d�v
dS

R 0 , �v Q ~�: (13)

Proposition 2 formalises the central result of the paper. The sign of the income e¤ect on

demand intensity is positive (negative) for su¢ ciently low (high) levels of price elasticity of

quality upgrading. The sign switch is due to demand intensity not exclusively depending on the

quality variation of the relevant good, but rather on that quality level change relative to the

variation in the average consumption quality.

3 Simulation of the model

A mild relaxation of the assumptions adopted in section 2 allows capturing the fundamental

patterns of the observed Engel curves: I introduce a change from �nite to in�nite magnitude

of �v at some level of quality. This variation implies an upper-bound to quality levels, which I

normalise to one for all goods. The natural interpretation of this bound is that, at each point

in time, the production of higher qualities may not (yet) be technologically feasible.

Formally, I modify the basic model by introducing two changes. First, my simulation takes

only six goods into account. The commodity set is re-de�ned V � N : v = 1; 2; :::; 6. Second, for
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each good, price relates to quality according to the function:

pv =

(
av (qv)

�v if qv � 1
1 if qv > 1

(14)

where av is a good-speci�c parameter introduced to re-scale price (3) following quality normal-

isation.

Proposition 3 Let Q �
P6
v=1 qv. Then:

�v = max
n
(S=av)

1
�v�1 (eQ)

� �v
�v�1 ; 1=Q

o
; 8v 2 V: (15)

Equation (15) is used to generate the results of the simulation, illustrated in Figure 3. The

parameters values fav; �vgv2V are chosen such that the observed peak in the relevant expenditure
share is replicated at the quality upper-bound.5

Figure 3 o¤ers a simple comparison with actual data by reporting the observed curves form

Figure 1. The fact that more than one change in the Engel curves slopes is replicated illustrates

the central feature of my model. This generalises the representations of preferences found in the

literature, which do not allow for other Engel curve patterns than monotonic or hump-shaped.

Figure 3. Simulated vs. observed Engel curves.

Source: U.S. Bureau of Labor Statistics, year 2005; and my calculations.

5The complete set of parameters is: �Food at home�, f0:032; 1:3g; �Food away from home�, f0:07; 1:7g; �To-
bacco and smoking supplies�, f0:03; 1:3g; �Entertainment�, f0:09; 1:5g; �Transportation�, f0:055; 1:65g; �Health
care�, f0:034; 1:3g.
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4 Concluding Remarks

This paper proposes a model generating a process of quality upgrading that governs two im-

portant features of consumer demand. First, every good is bound to become inferior at some

level of wealth. Second, demand shifts towards the most attractive goods are not necessarily

monotonic, in line with the observed Engel curves. The central result is that increasing shares of

spending are devoted to those goods whose quality can be more cheaply upgraded. A simulation

exercise shows that the observed patterns of U.S. consumer spending across di¤erent levels of

income can be replicated under a sensibly chosen parameterisation.

Appendix

The Appendix is organised as follows. Section A illustrates an extension of the model that allows

to study the income e¤ects on labour supply in the presence of varying willingness to pay for

quality. Section B proposes a formal de�nition of quality based on elements of the theory of

characteristics. Section C collects proofs of lemmas and propositions, along with the analytical

derivations of other equations, that were omitted in the main text. Section D formalises some

additional theoretical results.

A Extension: Wealth e¤ects and labour supply

An important consequence of the analysis produced in the main article is that the consumer

decision regarding the composition of the consumption bundle are not neutral to variations

produced by a rise in income. In previous studies � see, e.g., Grossman and Helpman (1991) and

Aghion and Howitt (1992)� the choice of which levels of quality to consume not only depends

merely on price-quality considerations and is not in�uenced by income, but also does not a¤ect

marginal utility of (quantitative) consumption. As a result, the presence of quality ladders only

in�uences consumer welfare. In this appendix, I show that, under a preference representation

such as that illustrated in Section 2, consumer taste for quality may also in�uence key economic

variables other than welfare measures, such as labour supply.

The starting point is to construct a quantitative indicator of total consumption (obtained

as an aggregator of the optimal allocations across the di¤erent goods) and the associated price

index, using the sector-speci�c results of the model, the de�nition of average quality and standard

aggregation techniques.

Corollary 1 Let C � XQ be the aggregate consumption index, and P � exp
�R
V �v ln pvdv

�
=
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exp
�R
V �v ln�vdv

�
the price index. Furthermore, denote �� �

R
�v�vdv. Then:

X = e��: (16)

Proof. The optimal quantity consumed for each good v as a function of price can be ob-

tained by replacing (7) into the de�nition of demand intensity, and rearranging to get: xv =

(S=Q) (qv=pv). Replacing xv in (1) with this expression yields the indirect utility: lnC =R
V qv ln [(S=Q) (qv=pv)] dv. Isolating S, and using the de�nition of average quality and (7)

again, I �nd the expenditure function in logarithmic terms: lnS = (1=Q) lnC +
R
V �v ln pvdv �R

V �v ln�vdv. Taking exponentials:

S =
exp

�R
V �v ln pvdv

�
exp

�R
V �v ln�vdv

�C1=Q:
Imposing: S = PX; I can de�ne: X � C1=Q; and: P � exp

�R
V �v ln pvdv

�
= exp

�R
V �v ln�vdv

�
.

Note that the price index can be rewritten as: P = exp
�R
V �v ln (�v=pv) dv

�
. From the de�nition

of demand intensity: �v=pv = xv=S; hence: P = exp
�R
V �v ln (xv=S) dv

�
. Using (8) yields:

P = exp
�R
V �v�vdv

�
=S. Hence: X = S=P = S=

�
exp

�R
V �v�vdv

�
=S
�
. Simplifying, and using

the de�nition of ��, (16) obtains.

Corollary 1 points out that, although the good-speci�c optimally consumed quantities hold

constant as income increases, the index of total consumption (16) decreases with income. The

reason is that, for each good, the consumed quantity is proportional to the cost of quality

upgrading. As Proposition 2 states, richer consumers tend to spend rising fractions of resources

on goods that can be more cheaply upgraded. These goods are precisely those whose constant

allocations are smaller. As a result, a rise in income shifts consumer demand away from goods

consumed in larger amounts and towards goods whose consumed quantities are smaller, thereby

generating a fall in total number of units consumed. This feature is formally captured by the

index of average price elasticity of quality upgrading, ��, which for the same reason just stated

falls as consumer spending rises.

With the aggregation indicators introduced above, it is possible to illustrate how taste for

quality a¤ects other consumer choices than the composition of the consumption bundle. In

particular, here I focus on labour supply. In order to take labour market structure into account,

I need to modify the utility function to account for leisure. Accordingly, I assume that the

representative consumer devote a fraction L of the unit labour endowment to work, and the

remaining fraction (1� L) to leisure. The latter yields utility according to the function:

U = Q lnX + 
 ln (1� L) ; (17)
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where 
 is a preference parameter that measures the weight attached to leisure relative to

consumption. In addition, the consumer�s budget constraint must be rede�ned to account for

the endogenous nature of total resources available for spending, which now depends on the

amount of time devoted to work:

PX = wL; (18)

where w 2 R++ is the wage obtained by the representative consumer in return to labour services
supplied to �rms.

Note that, given the static nature of the model and the additive separable speci�cation of

preferences, the introduction of L implies a mere substitution of spending S with earning wL in

the construction of the individual�s maximisation problem. This means that only condition (4)

for the solution of Problem 1 is a¤ected, and now reads:

ln [�vwL= (qv)
�v ] = �v: (19)

Therefore, changes in the fraction of labour devoted to work produce analogous e¤ects, with

regard to consumption goods choice, as an increase of spending S. As shown in Section 2,

optimal qualities and optimal demand intensities can be seen as functions of S and, thereby,

also the aggregation indicators constructed above. In this section, all these variables can thus

be seen as functions of L. I follow this lead in the next proposition, which illustrates how the

representative consumers chooses the optimal amount of labour supply by maximising utility

(17) subject to the constraint (18). The result is expressed as a function of wages, whose

variations are used to explore the wealth e¤ects on labour supply.

Proposition 4 L (w) = Q (w) = [Q (w) + 
]; with @L (w) =@w > 0.

Proof. The representative consumer solves:

max
fX;Lg

U = Q lnX + 
 ln (1� L) ;

subject to: X = e��; Q = Q (L) ; �� = �� (L) ;

where Q = Q (L) and �� = �� (L) indicate that the relevant indicators are, directly or indirectly,

functions of one of the choice variables. By substituting the constraint into the objective func-

tion, the problem can be rewritten as: max
L

U = Q (L) �� (L) + 
 ln (1� L). Di¤erentiating with
respect to L, and equating the resulting expression to zero yields:�

dQ

dL
�� +Q

d��

dL

�
� 


1� L = 0; (20)
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where, by analogy of dQ=dL with dQ=dS in (26) and of d�v=dL with d�v=dS in (12):

dQ

dL
=
Q

L

�Z
V

qz
�z � 1

dz

�
=

�Z
V

�zqz
�z � 1

dz

�
=
Q

L

1

~�
;

and:
d��

dL
=

Z
V
�v
d�v
dL

dv =
1

L

Z
V

�v
�v � 1

~� � �v
~�

�vdv:

Using these two equations in (20), and recalling that (~� � 1) =~� = 1=
�R
V �v�v= (�v � 1) dv

�
:




1� L =
Q

L

~� � 1
~�

Z
V

�v
�v � 1

�vdv =
Q

L
:

Rearranging, the �rst claim in Proposition 4 straightforwardly obtains.

The fact that optimal labour supply is increasing with wages immediately follows from consid-

ering that, according to Lemma 2, each good-speci�c quality and thereby average quality Q

increase with w, and that:

dL=dQ = 
= (Q+ 
) > 0;

since Q � 0 and, by de�nition �; 
 > 0.

Proposition 4 shows that consumer taste for quality not only has a welfare impact, but

also a¤ects the consumer decision on the labour market. Labour supply increases with the

level of average quality in consumption. Furthermore, the optimal amount of time spent on

working rises as wages w increase. This prediction seems quite intuitive. On the one hand, if

the level of quality in consumption is low, then the value of consumption in utility terms is also

low: consumers tend to minimise their working time, because the resulting spending capability

yields relatively little utility compared to leisure. On the other hand, if quality is high, then

the value of consumption in utility terms is also high, and consumers tend to increase their

working time. The equilibrium condition that follows from a preferences representation such

as that adopted by Grossman and Helpman (1991) � formally, L = 1= (1 + 
)� neglects this

phenomenon, predicting that the level of labour supply is set irrespective of the level of quality

in consumption.

B Formal de�nition of quality

This section proposes a formal speci�cation for the quality index. Alternative de�nitions can

be found, among many others, in Stokey (1988) and Merella (2006). Although not essential

� several contributions making explicit use of quality provide no formalization of the quality

index� de�ning quality helps in characterising the theoretical di¤erence between the vertical

and the horizontal aspect of consumption goods di¤erentiation.
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Figure 4: A commodity in the characteristics simplex

When qualitative di¤erentiation is introduced by assigning each commodity a value in a

quality ladder, a strict separation between quantitative and qualitative aspects is required. For

this reason, a commodity is referred to as a unit object, and its components as proportions

of this object. Following the Lancastrian tradition, a commodity is outlined by its underlying

characteristics, and it is thus depicted by the allocations of characteristics it contains.6 In

keeping quantitative and qualitative aspect of consumption separated, however, I depart from

Lancaster�s theory in assuming that the characteristic allocations lie in a unit interval, and that a

commodity is properly identi�ed only if the (fractional) allocations of the di¤erent characteristics

it contains sum up to one.

Formally, I assume that there exists a characteristic set J � N : j � J , where j stands for
a generic characteristic and J is the number of elements in J. Each j identi�es one dimension
in the characteristic allocation space Y � RJ+ : fyj 2 [0; 1] ; 8j 2 Jg, where yj measures the
jth characteristic allocation. A commodity is de�ned as a (J � 1) vector g � [y1; y2; :::; yJ ]0 in
Y, such that g0I = 1, where I is the unit (J � 1) vector. The resulting commodity set, denoted
by S � Y, can be geometrically represented by a (J � 1) dimensional simplex, an object often
used in studies involving probabilities. In Figure 4, the simplex is portrayed by the gray wired

triangle for a J = 3 case. Each point in the simplex represents a commodity (in the �gure, one

example is given by point g), qualitatively di¤erent from all others.

The commodity set so obtained can be sorted by de�ning a set of proper datum points.

Given the nature of the problem, a sensible benchmark is provided by human needs. These are

assumed to de�ne predetermined and objectively identi�able ideal objects, whose set is denoted

by V � R : v 2 [0; 1], where v indexes needs. I assume each ideal object �nds concrete expression
in a commodity equivalent (hereafter called bliss) in S, denoted by gv. By comparing a generic

6For a review of the theory of characterisitcs, see Lancaster (1971).
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g commodity to the bliss, I obtain a need-speci�c measure of qualitative di¤erentiation. I name

this measure quality, and denote it by q (g;gv) 2 R+ for some commodity g with reference to
need v.

In this framework, it seems natural to imagine an inverse relation of quality to the Euclid-

ean distance between the reference commodity and the bliss, denoted by d (g;gv) � jg � gvj.
Quality can thus be formally represented by the function q (g;gv) = f [d (g;gv)], with f 0 (�) < 0.
Function f can be given a number of possible formalizations. A convenient way to de�ne it

is to allow quality to range in all positive real numbers as stated above. Other intervals may,

however, be more appropriate in some contexts.

According to the framework developed so far, each commodity is able to satisfy, at least to

some extent, all human needs. Although it possibly re�ects reality in greater details, representing

preferences in such a setting is extremely complex. The analysis is thus eased by assuming that

one commodity can only satisfy one need. This univocal relation greatly simpli�es preference

representation, and the resulting demand functions take a more convenient form. A �qualitative

priority�condition seems a sensible way to link each good to a single need: that is, a commodity

satis�es the need for which that commodity is associated to the highest level of quality.

Denoting by Sv � S the subset of commodities satisfying the vth need, I formally express
the above condition as g 2 Sv , q (g;gv) = maxz2V fq (g;gz)g. If the level of quality of

a commodity is the same with regard to two or more needs, then it might be assumed, for

instance, that commodity is in the subset with the lowest v. Under these assumptions, the

subsets of commodities satisfying di¤erent needs are disjoint, i.e. Sv \Sz = ;, 8v; z 2 V. I name
these subsets goods. The de�nition of quality also provides a criterion for ordering the elements

in each good set Sv. The quality space is denoted by Q � R+ : q � q (g;gv), where q is the level
of quality associated to commodity g. Using the de�nitions of quality and good, hereafter each

commodity g 2 Sv is identi�ed by the pair (v; q) 2 V�Q.7

C Omitted proofs

Derivation of (1). Start from an aggregator of Dixit and Stiglitz (1977) type (in logarithmic

terms): ln
�R
V (cv)

(��1)=� dv
��=(��1)

. Computing the limit for � ! 1 yields:

lim
�!1

ln

�Z
V
(cv)

(��1)=� dv

�
= [(� � 1) =�] = 0=0:

7Notice that several varieties of the same good may provide the same level of quality. Among them, however,
only one will be actively produced. Since individuals will be completely indi¤erent in puchasing any of such
commodities, demand will be set according to minimum-price criteria.
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This indeterminacy can be solved by applying the De l�Hopîtal rule, which gives:

lim
�!1

�R
V
�
1=�2

�
(cv)

(��1)=� ln cvdv
�
=
�R
V (cv)

(��1)=� dv
�

1=�2
=

Z
V
ln cvdv:

Hence, the �rst expression in (1) obtains.

Proof of Lemma 1. Suppose the individual chooses xv < 1, for some v 2 V. From the

de�nition of good-speci�c quality-adjusted consumption index in (1), it follows that: cv = xv; so

the individual will optimally choose the cheaper good, regardless of the level of quality attached

to it. From (3), it follows that the consumption good in the baseline quality, q = 0, is costless,

regardless the good considered. Therefore, the individual will optimally choose to consume the

good in the baseline quality, qv = 0. But this cannot be optimal, since the individual can achieve

a higher level of cv by increasing the quantity consumed xv without any additional cost, leading

to a contradiction.

Complete Solution of Problem 1. First note that, using Lemma 1 and the de�nition of

demand intensities, solving Problem 1 is equivalent to solve the following problem:

max
fqv ;�vgv2V

R
V ln cvdv;

subject to:
R
V �vdv = 1;

cv = (xv)
qv ; xv = �vS=pv;

pv = (qv)
�v ; qv; �v � 0:

(21)

Lemma 1 ensures that, under qv; xv � 0, there cannot be candidate maxima in the subset

fxvgv2V 2 [0; 1), hence using the good-speci�c quality-adjusted consumption index cv = (xv)
qv

is equivalent to use that speci�ed in (1). The de�nition of demand intensity �v = pvxv=S allows

for the maximisation problem to be formalised in terms of the choice variables fqv; �vgv2V.
This is useful for two reasons. Firstly, demand intensities are my main object of interest, hence

discussing the optimality conditions taken with respect to these variables provides a deeper

insight on how the consumer composes the consumption bundle. Secondly, it eases tractability,

especially with regard to the computation of the su¢ cient conditions for a maximum.

I write the Lagrangian for the problem 21:

L =
Z
V
qv ln (�vS= (qv)

�v) dv + �

�
1�

Z
V
�vdv

�
:
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The �rst-order conditions for a maximum are:

dL=dqv = ln (�vS= (qv)�v)� �v � 0; qv � 0;
qv [ln (�vS= (qv)

�v)� �v] = 0;
(22)

dL=d�v = qv=�v � � � 0; �v � 0;
�v (qv=�v � �) = 0;

(23)

dL=d� = 1�
Z
V
�vdv = 0: (24)

The Kuhn-Tucker Su¢ ciency Theorem � see Chiang and Wainwright (2005, pp. 424-5)� im-

plies that the �rst-order conditions are necessary and su¢ cient for a global maximum in the

nonnegative orthant, since: i) The objective function:Z
V
qv ln (�vS= (qv)

�v) dv

is strictly concave in the nonnegative orthant. This condition holds since the objective function

is a sum over the strictly concave functions:

fqv ln (�vS= (qv)�v)gv2V

in (qv; �v) 2 R2+. To prove this point, note that:

@2qv ln (�vS= (qv)
�v) = (@qv)

2 = ��v=qv;

@2qv ln (�vS= (qv)
�v) = (@�v)

2 = �qv= (�v)2 ;

@qv ln (�vS= (qv)
�v) = (@qv@�v) = 1=�v = @qv ln (�vS= (qv)

�v) = (@�v@qv) :

Hence, the Hessian matrix is negative de�nite, since:

jH1j = ��v=qv < 0;

jH2j = jHj = (�v � 1) = (�v)2 > 0:

ii) Each constraint is convex in the nonnegative orthant. This is trivial, since both the nonnega-

tivity constraints and the budget constraint are linear, both in qualities and demand intensities.

As a result: if there exists a candidate (interior) solution fqv; �vgv2V satisfying (4)-(6), then this
solution also satis�es (22)-(24), and is the only possible solution to Problem 1.

Derivation of (7). From (5), multiply both sides by �v, integrate across goods, and use the

de�nition of average quality to obtain: Q =
R
V qvdv = �

R
V �vdv = �. Replace this result into

(5) and rearrange to get (7).
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Proof of Proposition 1. First, the result in (8) trivially follows from (4): (i) recalling that,

by the de�nitions of price and demand intensity, xv = �vS= (qv)
�v , hence: lnxv = �v; and (ii)

taking exponentials on both sides of the resulting equation.

Second, replace (7) into (4) to obtain: ln ((qv=Q)S= (qv)
�v) = �v. Take exponentials of both

sides in the last equation and rearrange to get: (qv)
1��v S=Q = e�v . Isolate qv to have (9).

Third, divide both sides by Q to get: �v = e
� �v
�v�1 (S)

1
�v�1 (Q)

� 1
�v�1

�1. Then, rearrange to

obtain (10).

Finally, the inequalities follow from considering that: �v > 1, 8v 2 V; and that: S;Q > 0.

Proof of Lemma 2. Di¤erentiate (9) with respect to S, and use (9) again to get:

dqv
dS

=
qv

�v � 1

�
1

S
� 1

Q

dQ

dS

�
: (25)

Use the de�nition of average quality and (25) to obtain: dQ=dS =
R
V (dqz=dS) dz = (1=S)

R
V qz=

(�z � 1) dz � (1=Q) (dQ=dS)
R
V qz= (�z � 1) dz. Isolate dQ=dS and rearrange:

dQ

dS
=
Q

S

�Z
V

qz
�z � 1

dz

�
=

�Z
V

�zqz
�z � 1

dz

�
> 0: (26)

Use (26) into (25) to get:

dqv
dS

=
1

S

qv
�v � 1

�
1�

�Z
V
qz= (�z � 1) dz

�
=

�Z
V
�zqz= (�z � 1) dz

��
:

Rearranging, (11) obtains, where the inequality holds since: qv; qz > 0; and �v; �z > 1, for all

v; z 2 V.

Proof of Proposition 2. First, from (7), di¤erentiate with respect to S:

d�v
dS

=
d (qv=Q)

dS
=
1

Q

dqv
dS

� �v
Q

dQ

dS
; (27)

use (25) to get: d�v=dS = (�v=S) = (�v � 1)� [1 + 1= (�v � 1)] (�v=Q) (dQ=dS). Rearrange:

d�v
dS

=
�v

�v � 1

�
1

S
� �v
Q

dQ

dS

�
: (28)

Use (26) to obtain:

d�v
dS

=
�v

�v � 1

�
1

S
� �v
Q

�
Q

S

�Z
V

qz
�z � 1

dz

�
=

�Z
V

�zqz
�z � 1

dz

���
:

Use the de�nition of ~� to have: d�v=dS = [�v= (�v � 1)] [(1=S)� (�v=S) =~�]. Rearranging, (12)
obtains.
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Second, from (12) it follows:
d�v
dS

R 0 , ~� � �v R 0;

from which (13) straightforwardly obtains.

Proof of Proposition 3. The optimisation problem can be stated as:

max
fqv ;�vgv2V

P6
v=1 qv ln (�vS=pv) ;

subject to:
P6
v=1 �v = 1;

fpv = av (qv)�vgv2[1;6] ; fqv � 1gv2[1;6] :

Write the Lagrangian:

L =
X6

v=1
qv ln ((S=av)�v= (qv)

�v) + �
�
1�

X6

v=1
�v

�
+
X6

v=1
�v (1� qv) :

The �rst-order conditions for a maximum are:

dL=dqv = ln ((S=av)�v= (q)
�v)� �v � �v = 0; (29)

dL

d�v
= qv=�v � � = 0; (30)

dL

d�
= 1�

X6

v=1
�v = 0; (31)

dL

d�v
= 1� qv � 0; �v � 0;

�v (1� qv) = 0:
(32)

From (30) and (31), it follows that:
P6
v=1 qv = �

P6
v=1 �v = � = Q. Hence: �v = qv=� = qv=Q.

Replacing this expression into (29) yields:

ln
�
(S=av) (1=Q) = (qv)

�v�1
�
� �v � �v = 0:

Hence: qv = (avQ=S)
�1=(�v�1) e�(�v+�v)=(�v�1). Finally, considering this expression together

with (32):

qv = max
n
[S= (avQ)]

1
�v�1 e

� �v
�v�1 ; 1

o
: (33)

Dividing both sides by Q, and rearranging, (15) obtains.
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D Additional theoretical results

Corollary 2 Let v0; v00 2 V be two goods such that �v0 < �v00. Then:

xv0 < xv00 ; 8S 2 R++; (34)

and:

�v0 Q �v00 , S Q 1: (35)

Proof. First, the result in (34) straightforwardly follows by considering (8) in conjunction with

the inequality �v0 < �v00 .

Second, rewrite (10) as: �v = (S=eQ)
�v

�v�1 =S; it follows that:

�v0 Q �v00 , (S=eQ)�v0=(�v0�1) Q (S=eQ)�v00=(�v00�1) :

Rearrange the second inequality to get: (S=eQ)(�v00��v0 )=[(�v0�1)(�v00�1)] Q 1. Raise both sides to
the power (�v0 � 1) (�v00 � 1) = (�v00 � �v0), and rearrange:

�v0 Q �v00 , S=Q Q e: (36)

Raise both sides of the second inequality to the power �v= (�v � 1), and divide by S to get:
(S=eQ)

�v
�v�1 =S Q 1=S. Use (10) to get: �v Q 1=S. Integrating over goods yields:

�v0 Q �v00 , 1 =

Z
V
�vdv Q (1=S)

Z
V
dv = 1=S; (37)

from which (35) straightforwardly obtains.

Corollary 3 Let v0; v00 2 V be two goods such that �v0 < �v00. Then:

dqv0

dS
S dqv00

dS
, S Q Ŝv0;v00 ; (38)

where Ŝv0;v00 �
R
V

n
[(�v0 � 1) = (�v00 � 1)](�v0�1)(�v00�1)=(�v00��v0 )

o�v=(�v�1)
dv < 1.

Proof. From (11) it follows:

dqv0

dS
Q dqv00

dS
, qv0

�v0 � 1
Q qv00

�v00 � 1
:

Use (10), multiply both sides of the second inequality by S=Q, and rearrange to have:

[S= (eQ)](�v00��v0 )=[(�v0�1)(�v00�1)] Q (�v0 � 1) = (�v00 � 1) :

18



Raise both sides to the power (�v0 � 1) (�v00 � 1) = (�v00 � �v0) to obtain:

S= (eQ) Q [(�v0 � 1) = (�v00 � 1)](�v0�1)(�v00�1)=(�v00��v0 ) :

Rearrange, raise both sides to the power �v= (�v � 1), and divide by S to get:

(1=S) [S= (eQ)]�v=(�v�1) Q (1=S) [(�v0 � 1) = (�v00 � 1)][(�v0�1)(�v00�1)=(�v00��v0 )][�v=(�v�1)] :

Using again (10), this inequality implies:

dqv0

dS
Q dqv00

dS
, �v Q

1

S

�
�v0 � 1
�v00 � 1

�(�v0�1)(�v00�1)
�v00��v0

�v
�v�1

;

integrating over goods on both sides of the second inequality yields:

1 =

Z
V
�vdv T (1=S)

Z
V
[(�v0 � 1) = (�v00 � 1)][(�v0�1)(�v00�1)=(�v00��v0 )][�v=(�v�1)] dv;

from which (38) straightforwardly obtains.
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